Two cationic iron-based crystalline porous materials for encapsulating and sustained release of 5-fluorouracil

Xi-yu Sun^a, Hong-jing Zhang^a, Qian Sun^{*a} and En-qing Gao^b

Department of chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China; Email: xsun@chem.ecnu.edu.cn

1. The synthesis and characterization of materials.

Terephthalic acid (H₂BDC) (34.8 mg), 2, 4, 6-tris(4-pyridyl)-1,3,5-triazine (TPT) (21.9 mg) and Fe(ClO₄)₃·H₂O (78.3 mg) were added to 5mL DMF according to the molar ratio of 2:1:1, sonicated for 20 min until fully dissolved. Then transfer the solution to a reaction kettle heated in an oven at 120° C for five days. The temperature was slowly cooled down to obtain yellow microcrystalline. Elemental analysis (%) Calcd for CPM-83 (Fe₃O(BDC)₃(TPT)](ClO₄): C, 46.38; H, 2.22; N, 7.73. Found: C, 45.67; H, 3.34; N, 7.44. Elemental analysis (%) for CPM-85, according to the formula of [Fe₃O(BPDC)₃(TPT)](ClO₄)(DMF): calcd C, 54.47; H, 3.12; N, 7.06. Found: C, 53.95; H, 3.37; N, 7.63.

2. The characterization of materials.

2.1 X-ray powder diffraction

Figure S1 X-ray powder diffraction of CPM-83, activated CPM-83, CPM-83 soaked in water for

one week, 5-Fu@CPM-83

Figure S2 X-ray powder diffraction of CPM-83 in different pH solutions

Figure S3 X-ray powder diffraction of CPM-85, activated CPM-85 and 5-Fu@CPM-85

2.2 Scanning Electron Microscope

Figure S4 Scanning Electron Microscope of CPM-83 (a) (b), CPM-85 (c) (d)

2.3 Thermogravimetric analysis

Figure S5 Thermogravimetric analysis of CPM-83 and 5-Fu@CPM-83

Figure S6 Thermogravimetric analysis of CPM-85 and 5-Fu@CPM-85

2.4 Infrared spectra characterization

Figure S7 Infrared spectra of 5-Fu, CPM-83, 5-Fu@CPM-83

Figure S8 Infrared spectra of 5-Fu, CPM-85, 5-Fu@CPM-85

3. Standard curve of 5-Fu.

Figure S9 Standard curve of 5-Fu in PBS solution

Figure S10 Standard curve of 5-Fu in ethanol solution

4. Encapsulation mechanism

Figure S11 Zeta potential of CPM-83 and CPM-85 under different concentrations of 5-Fu

5. Kinetic model fitting

Figure S12 Pharmacokinetic simulation of 5-Fu@CPM-83 by Korsmeyer-Peppas model

Figure S13 Pharmacokinetic simulation of 5-Fu@CPM-83 by Higuchi model

Figure S14 Pharmacokinetic simulation of 5-Fu@CPM-83 by first order model

Figure S15 Pharmacokinetic simulation of 5-Fu@CPM-85 by Higuchi model

Figure S16 Pharmacokinetic simulation of 5-Fu@CPM-85 by Korsmeyer-Peppas model

Figure S17 Pharmacokinetic simulation of 5-Fu@CPM-85 by first order model

Table S1 Summary of four types of kinetic model fitting tables for drug sustained release behavior under different pH conditions (5-Fu@CPM-83)

pH=7.4	Model	Fitted Equations	Correlation Coefficients(R ²)
First order		y=0.45113(1-e ^{-0.16551x})	0.92938
Hill		$y=0.61664x^{0.6231}/(9.14866^{0.6231}+x^{0.6231})$	0.99237
Higuchi		y=0.049556x ^{0.5} +0.09407	0.87759
Korsemeyer-peppas		$y=-0.85434+0.98826x^{0.07138}$	0.97917
pH=6.8	Model	Fitted Equations	Correlation Coefficients(R ²)
First order		y=0.47509(1-e ^{-0.23989x})	0.92635

Hill		$y=0.62673x^{0.6339}/(9.14866^{0.6339}+x^{0.6339})$	0.99581
Higuchi		y=0.05192x ^{0.5} +0.11549	0.85944
Korsemeyer-peppas		$y=-5.40825+5.5673x^{0.01479}$	0.98647
pH=1.5	Model	Fitted Equations	Correlation Coefficients(R ²)
First order		y=0.69693(1-e ^{-0.21149x})	0.89666
Hill		$y=1.02327x^{0.55156}/(9.14866^{0.55156}+x^{0.55156})$	0.98905
Higuchi		y=0.07634x ^{0.5} +0.16602	0.86854
Korsemeyer-peppas		y=-1.73423+1.96659x ^{0.05619}	0.98447

Table S2 Summary of four types of kinetic model fitting tables for drug sustained release behavior under different pH conditions (5-Fu@CPM-85)

pH=7.4	Model	Fitted Equations	Correlation Coefficients(R ²)
First order		y=0.78788(1-e ^{-1.0485x})	0.96695
Hill		$y=0.82685x^{1.05904}/(0.60126^{1.05904}+x^{1.05904})$	0.98849
Higuchi		y=0.05185x ^{0.5} +0.48279	0.42684
Korsemeyer-peppas		y=-257.490+258.048x ^{2.9277E-4}	0.78362
pH=6.8	Model	Fitted Equations	Correlation Coefficients(R ²)
First order		y=0.76357(1-e ^{-0.63296x})	0.98019
Hill		$y=0.79895x^{1.1675}/(1.06502^{1.1675}+x^{1.1675})$	0.99455
Higuchi		y=0.05877x ^{0.5} +0.39575	0.51102
Korsemeyer-peppas		y=-1898.81+1899.26x ^{5.145E-5}	0.80863
pH=1.5	Model	Fitted Equations	Correlation Coefficients(R ²)
First order		y=0.44505(1-e ^{-0.89049x})	0.90648
Hill		$y=0.52199x^{0.58313}/(0.74196^{0.58313}+x^{0.58313})$	0.99747
Higuchi		y=0.03295x ^{0.5} +0.2543	0.54657
Korsemeyer-peppas		y=-777.925+778.222x ^{6.2757E-5}	0.94960

6. Cell viability test

Figure S18 The L929 cell morphology after treated with different concentration of CPM-83, (a) Control, (b) 20µg/ml, (c) 40µg/ml, (d) 60µg/ml, (e) 80µg/ml, (f)100µg/ml

Figure S19 The L929 cell morphology after treated with different concentration of CPM-85, (a) Control, (b) 20µg/ml, (c) 40µg/ml, (d) 60µg/ml, (e) 80µg/ml, (f)100µg/ml

7. X-ray powder diffraction after drug release

Figure S20 X-ray powder diffraction of CPM-83 and CPM-85 after drug release