Isovalent anion induced electrochemical activity in doped Co₃V₂O₈ for OER application

Maurya Gyanprakash D.^{1,2,*}, Gyan Prakash Sharma^{1,3}, Prashant Kumar Gupta^{1,4}

¹ Department of Chemical Engineering, Indian Institute of Technology, Kanpur-208016, India

² Department of Energy Science and Technology, Centre for Advanced Studies, Dr. A. P. J.

Abdul Kalam Technical University, Jankipuram, Lucknow-226031, India

³ Kanopy Techno Solutions Pvt Ltd, Techno Park, Kanpur- 208016, India

⁴Department of Chemical Engineering, Indian Institute of Technology, Jodhpur- 342037, India

*Corresponding Author: <u>gyan@cas.res.in</u>

Supplementary Information:

Fig S1: Polarisation curve of all samples towards the oxygen evolution reaction at 5mV/s scan rate in 0.1M NaOH electrolyte based on geometric surface area.

Fig. S2 Cyclic voltammogram of Co3O4, Co3V2O8 and S-Co3V2O8 at different scan rate utilized for the determination of Cdl.

Electrochemical surface area (ECSA) estimation:

Double layer capacitance (Cdl) = ECSA* capacitance per unit surface area on standard electrode like Au (C_{Au})

$$ECSA = \frac{C_{dl}}{C_{Au}}$$

Here C_{Au} is taken as 40 μ F¹.

References:

 Horkans, J., Cahan, B.D. and Yeager, E., 1974. Electrode potential scanning ellipsometric spectroscopy: study of the formation of the anodic oxide film on noble metals. Surface Science, 46(1), pp.1-23.