Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Triarylborane-Triphenylamine Based Luminophore for Mitochondria Targeted Live Cell Imaging and Colorimetric Detection of Aqueous Fluoride

Chinna Ayya Swamy P^{†*}, Archana V Raveendran[†], Narra Sivakrishna^r, and Rajendra

Prasad Nandi[‡]

[†] Main group Organometallics Materials, Supramolecular Chemistry and Catalysis lab, Department of Chemistry,

National Institute of Technology, Calicut, India-673601.

^PHumanities& Sciences, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology,

Hyderabad, India-500090.

[‡] Inorganic and Physical Chemistry Department, Indian Institution of Science, Bangalore-560 012, India.

E-mail: swamy@nitc.ac.in

TABLE OF CONTENTS

1)	Characterization Data	Page S2-S14
2)	Optical Properties	Page S15-S19
3)	Anion Binding Studies	Page S19-S30
4)	Cytotoxicity Study	Page S31
5)	pH and photostability	Page S32
6)	DFT computational data	Page S32-S47
7)	Comparision table water soluble organometallic compounds	Page S47-S51
	with fluoride ions	
8)	References	Page S51-S52

Characterization Data

NMR Characterization:

Figure S1. ¹H NMR spectra of BTPA-Br

Figure S2. ¹³C NMR spectra of BTPA-Br

Figure S3. ¹H NMR spectra of BTPA-2Br

Figure S4. ¹³C NMR spectra of BTPA-2Br

Figure S5. ¹H NMR spectra of BTPA-NMe₂

Figure S6. ¹³C NMR spectra of BTPA-NMe₂

Figure S7. ¹¹B NMR spectra of BTPA-NMe₂

Figure S8. ¹H NMR spectra of BTPA-2NMe₂

Figure S9. ¹³C NMR spectra of BTPA-NMe₂

Figure S10. ¹¹B NMR spectra of BTPA-2NMe₂

Figure S11. ¹H NMR spectra of 1

Figure S12. ¹³C NMR spectra of 1

Figure S13. ¹¹B NMR spectra of 1

Figure S14. ¹H NMR spectra of 2

Figure S15. ¹³C NMR spectra of 2

Figure S16. ¹¹B NMR spectra of 2

HRMS Characterization

Figure S17. HRMS of BTPA-Br

Figure S18. HRMS of BTPA-2Br

Figure S20. HRMS of BTPA-2NMe2

Figure S21. HRMS of 1

Figure S22. HRMS of 2

Single Crystal XRD Characterization:

Figure S23. Molecular structures of **BTPA-2Br** (left) and **BTPA-2NMe**₂ (right) obtained from Single Crystal X-Ray Diffraction measurements (**H** atoms are omitted for clarity).

	BTPA-2Br	BTPA-2NMe2
Empirical formula	C ₁₈ H ₁₇ B _{0.50} Br N _{0.50}	C ₁₁₂ H ₁₀₈ B ₂ N ₆
Formula weight	325.64	1559.66
Temperature	295(2) K	100(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Triclinic
Space group	<i>C</i> 2/c	P -1
Unit cell dimensions	$a = 19.682(5) \text{ Å}; \alpha = 90^{\circ}$	$a = 13.122(2)$ Å; $\alpha = 76.429(4)^{\circ}$
	b = 14.346(3) Å; β = 104.682(6)°	b = 19.080(4) Å; β = 77.166(4)°
	$c = 12.215(3) \text{ Å}; \gamma = 90^{\circ}$	$c = 19.964(4) \text{ Å}; \gamma = 76.851(4)^{\circ}.$
Volume	3336.2(13) Å ³	4655.6(15) Å ³

Table S1. Selected crystallographic data for structures BTPA-2Br and BTPA-2NMe₂.

Ζ	8	2
Density(calculated)	1.297 Mg/m ³	1.113 Mg/m ³
Theta range for data collection	3.323 to 27.559°	2.993 to 25.000°
Index ranges	-25<=h<=25, -18<=k<=18, -15<=l<=15	-15<=h<=15, -22<=k<=22, -23<=l<=23
Reflections collected	49667	56898
Independent reflections	3839 [R(int) = 0.1495]	14778 [R(int) = 0.1088]
Completeness to theta = 24.999°	99.8 %	90.0 %
Goodness-of-fit on F ²	0.994	1.044
Final R indices [I>2sigma(I)]	R1 = 0.0546, $wR2 = 0.0977$	R1 = 0.1235, wR2 = 0.3115
R indices (all data)	R1 = 0.1952, wR2 = 0.1323	R1 = 0.2470, wR2 = 0.3456
Largest diff. peak and hole	0.410 and -0.407 e.Å ⁻³	0.467 and -0.371 e.Å ⁻³
CCDC number	1975082	1975083

Optical Properties

Figure S24: UV-Visible (left) and fluorescence (right) spectra of **BTPA-NMe**₂ in CH₃CN at various concentrations (λ_{ex} at 375 nm)

Figure S25: UV-Visible (left) and fluorescence (right) spectra of **BTPA-2NMe**₂ in CH₃CN at various concentrations (λ_{ex} at 375 nm)

Figure S26: UV-Visible (left) and fluorescence (right) spectra of **1** in CH₃CN at various concentrations (λ_{ex} at 375 nm)

Figure 27: UV-Visible (left) and fluorescence (right) spectra of **1** in CH₃CN at various concentrations (λ_{ex} at 375 nm)

Figure 28: Normalized UV-Visible (right) and Fluorescence (left) spectra of **BTPA-NMe**₂ in solvents with different polarity (10 μ M; λ_{ex} at 375 nm)

Figure 29: Normalized UV-Visible (right) and Fluorescence (left) spectra of **BTPA-2NMe**₂ in solvents with different polarity (10 μ M; λ_{ex} at 375 nm)

Figure 30: Normalized UV-Visible (right) and Fluorescence (left) spectra of 1 in solvents with different polarity (10 μ M; λ_{ex} at 375 nm)

Figure 31: Normalized UV-Visible (right) and fluorescence (left) spectra of 2 in solvents with different polarity (10 μ M; λ_{ex} at 375 nm)

Table S2: Optical data of BTPA-NMe2 in different solvents

Solvents	λ_{abs}	λ_{em}	λ_{abs} - λ_{em} (nm);	Quantum	Life	Radiative decay	Non-radiative
			(cm ⁻¹)	yields (%)	time	constant (10 ⁸ /s)	decay constant
					(ns)		$(10^8/s)$
Hexane	389	446	57; (3291)	68	1.53	4.43	2.09
Toluene	393	466	73; (3986)	66	1.14	5.79	2.98
CHCl ₃	393	486	97; (4849)	62	1.72	3.61	2.21
EtOAc	389	496	107; (5131)	41	1.95	2.15	3.31
CH ₂ Cl ₂	387	501	114; (5879)	21	2.39	1.13	3.31
CH ₃ CN	390	505	115; (5840)	16	2.45	0.65	3.43
MeOH	387	508	121; (6154)	2	2.01	0.099	4.86
DMF	391	515	124; (6158)	1	2.59	0.033	3.98

Solvents	λ_{abs}	λ_{em}	λ_{abs} - λ_{em} (nm);	Quantum	Life time	Radiative	Non-radiative
	(nm)	(nm)	(cm ⁻¹)	yields (%)	(ns)	decay	decay constant
						constant	(10 ⁸ /s)
						(10 ⁸ /s)	
Hexane	384	455	71; (4063)	66	1.86	3.51	1.82
Toluene	384	475	91; (4989)	65	1.87	3.40	1.87
CHCl ₃	391	492	101; (5250)	63	1.52	4.15	2.43
EtOAc	384	498	114; (5962)	38	1.97	1.92	3.15
CH ₂ Cl ₂	384	503	119; (6161)	15	2.47	0.61	3.34
CH ₃ CN	391	507	116; (6299)	13	2.51	0.51	3.47
МеОН	384	510	126; (6351)	3	1.86	0.16	4.21
DMF	390	517	127; (6435)	2	2.57	0.078	3.81

Table S3: Optical data of BTPA-2NMe2 in different solvents

Table S4: Optical data of 1 in different solvents

Solvents	λ_{abs}	λ_{em}	$\lambda_{abs} - \lambda_{em} (nm);$	Quantum	Life time	Radiative	Non-radiative
			(cm ⁻¹)	yields (%)	(ns)	decay constant	decay constant
						(10 ⁸ /s)	$(10^8/s)$
Hexane	368	417	49; (3196)	74	1.28	5.78	2.03
Toluene	376	423	47; (2955)	75	1.39	5.39	1.79
CHCl ₃	372	437	65; (3998)	73	1.38	5.29	1.96
EtOAc	372	443	71; (4308)	72	1.39	5.18	2.03
CH ₂ Cl ₂	372	448	76; (4560)	73	1.52	4.85	1.78
CH ₃ CN	378	457	79; (4574)	73	1.81	4.03	1.49
MeOH	374	467	93; (5314)	72	1.31	5.49	2.14
DMF	378	473	99; (5324)	71	1.79	3.97	1.62

Solvents	λ_{abs}	λ_{em}	$\lambda_{abs} - \lambda_{em} (nm);$	Quantum	Life time	Radiative	Non-radiative
			(cm ⁻¹)	yields (%)	(ns)	decay constant	decay constant
						(10 ⁸ /s)	(10 ⁸ /s)
Hexane	374	431	57; (3536)	71	1.26	5.63	2.34
Toluene	372	438	66; (4050)	70	1.38	5.07	2.17
CHCl ₃	375	444	69; (4144)	70	1.45	4.84	2.06
EtOAc	377	457	80; (4644)	69	1.57	4.40	2.04
CH ₂ Cl ₂	376	462	86; (4950)	70	1.73	4.04	1.73
CH ₃ CN	378	470	92; (5179)	69	1.26	5.48	2.46
MeOH	378	478	100; (5553)	67	2.06	3.25	1.60
DMF	374	480	106; (5904)	67	2.01	3.33	1.65

Table S5: Optical data of 2 in different solvents

Anion Binding studies in Acetonitrile

Acetonitrile solutions of **1** and **2** $(1 \times 10^{-5} \text{ M})$ were titrated independently against incremental addition of solution of TBAF.

Figure S32: Left: changes associated with UV-Vis spectrum of **1** (acetonitrile, 10 μ M) in the presence of fluoride ions (TBAF, 1.5×10^{-3} M) (λ_{ex} at 375 nm); right: plot of I/I₀ Vs (1-I/I₀)/[F⁻] (λ_{abs} at 385 nm). Calculated binding constant K = 2.8×10^5 M⁻¹

Figure S33: Left: changes associated with UV-Vis spectrum of **2** (10 μ M in water (1% CH₃CN was added to enhance the solubility) in the presence of fluoride ions (1.5×10^{-3} M) (KF dissolved in HEPES buffer and pH maintains 7.0) (λ_{ex} at 375 nm); right: plot of I/I₀ Vs (1-I/I₀)/[F⁻] (λ_{abs} at 385 nm). Calculated binding constant K = 3.3×10^{5} M⁻¹.

Figure S34: Linear plots between the changes in absorbance of 2 at 385 nm (left) and 485 nm (right) *vs* concentration of fluoride (in ppm) in CH_3CN solvent.

Figure S35: Changes associated with UV-Visible spectra of 1 (left) and 2 (right) in presence of various anions (CH₃CN, 10 μ M)

Figure S36: Photograph demonstrating the color changes of **1** (above) and **2** (down) associated with the addition of different anions under ambient light. Concentration: 10 μ M in acetonitrile; Fluoride was added in 1 equv amount and other anions were used in greater than 50 equv amount.

Fluorescence titrations study in organic medium (CH₃CN)

Fluorescence titration studies were carried by placing 2 mL of compounds **1** and **2** were in 1×10^{-5} M stock solution in CH₃CN. A septum screw capped quartz cuvette of 1 cm width and followed by gradual incremental addition of 1×10^{-3} M CH₃CN solution of anions. The experiment was repeated for at least three times at 298 K to obtain concordant value. Compounds **1** or **2** were excited at 375 nm and the emissions were monitored in the range of 400-700 nm (2 nm slit width kept constant for both source and detector).

Figure S37: Changes associated with PL spectra of 1 (left) and 2 (right) in the presence of fluoride ions (TBAF, 1.5×10^{-3} M ,acetonitrile) (λ_{ex} at 375 nm)

Figure S38: Changes associated with PL spectra of 1 (left) and 2 (right) in presence of various anions $(CH_3CN, 10 \ \mu M)(\lambda_{ex} \text{ at } 375 \text{ nm}).$

Figure S39: Photograph demonstrating the emission color changes associated with 1 (above) and 2 (down) with different anions under UV-light. Solution concentration was 10 μ M in acetonitrile solvent. Fluoride was added in 1equv amount and other anions were used in greater than 50equv amount.

UV-visible titration studies in CH₃CN: H₂O (1:1)

Respective Lewis acid (1/2) (1 × 10⁻⁵ M) was dissolved in CH₃CN: H₂O in 1:1 ratio. The pH of solution was maintained at pH 7.0 using HEPES buffer (6 mM). Aqueous solutions of potassium fluoride used as a fluoride source.

Figure S40: Left: Changes associated with UV-Vis absorption spectrum of **1** (1:1 ratio of CH₃CN/H₂O mixture 10 μ M) in presence of fluoride ions (KF, 1 × 10⁻³ M). right: plot of I/I₀ Vs (1-I/I₀)/[F⁻] (λ_{abs} at 385 nm). Calculated binding constant K = 2.4 × 10⁵ M⁻¹

Figure S41: Left: Changes associated with UV-Vis absorption spectrum of **2** (1:1 ratio of CH₃CN/H₂O mixture 10 μ M) in presence of fluoride ions (KF, 1 × 10⁻³ M,). right: plot of I/I₀ Vs (1-I/I₀)/[F⁻] (λ_{abs} at 385 nm). Calculated binding constant K = = 3.1 × 10⁵ M⁻¹

Figure S42: Linear plot between the changes in absorbance of **2** at 385 nm (left) and 485 nm (right) vs concentration of fluoride (ppm) in 1:1 mixture of CH₃CN and H₂O.

Figure S43: Linear plot between the changes in absorbance of **2** at 385 nm (left) and 485 nm (right) vs concentration of fluoride in water (1% CH₃CN was added to enhance the solubility).

Figure S44: UV-Visible absorbance spectra of 1 (left) and 2 (right) in presence of various anions (in 1:1 mixture of CH₃CN and H₂O)

Fluorescence titration studies in CH₃CN: H₂O (1:1)

Respective Lewis acid (1/2) $(1 \times 10^{-5} \text{ M})$ was dissolved in CH₃CN:H₂O mixture in the ratio 1:1. The pH of solution was maintained at pH 7.0 using HEPES buffer. Aqueous solutions of potassium fluoride used as a fluoride source $(1 \times 10^{-3} \text{ M} \text{ in HEPES buffer}, \text{pH} = 7)$. The experiment was repeated for at least three times at 298 K to obtain concordant value. Compounds 1 or 2 were excited at 375 nm and the emissions were monitored in the range of 400-700 nm (2 nm slit width kept constant for both source and detector).

Figure S45: Changes associated with PL spectrum of **1** (left) and **2** (right) (1:1 ratio of CH₃CN/H₂O mixture, 10 μ M) in the presence of fluoride ions (KF, 1 × 10⁻³ M,) (λ_{ex} at 375 nm)

Figure S46: Changes associated with PL spectra of **1** (left) and **2** (right) in presence of various anions (1:1 ratios of H₂O and CH₃CN, 10 μ M)(λ_{ex} at 375 nm).

UV-visible titration studies in water

Respective Lewis acid (1/2) $(1 \times 10^{-5} \text{M})$ were dissolved in water (1% of CH₃CN was added to enhance the solubility). The pH of solution was maintained at pH 7.0 using HEPES buffer. Aqueous solutions of potassium fluoride used as a fluoride source

Figure S47: Left: Changes associated with UV-Vis absorption spectrum of **1** (aqueous solution (1% of CH₃CN was added to enhance the solubility), 10 μ M) in presence of fluoride ions (KF, 1.5 × 10⁻³ M). right: plot of I/I₀ Vs (1-I/I₀)/[F⁻] (λ_{abs} at 385 nm). Calculated binding constant K = 3.0 × 10⁴ M⁻¹

Figure S48: Left: Changes associated with UV-Vis absorption spectrum of **1** (aqueous solution (1% of CH₃CN was added to enhance the solubility), 10 μ M) in presence of various anions. right: plot of I/I₀ Vs (1-I/I₀)/[F⁻] (λ_{abs} at 385 nm) for compound **2**. Calculated binding constant K = 2.7 × 10³ M⁻¹ for **2**.

Figure S49: Photograph demonstrating the color changes of **1** (above) and **2** (down) associated with the addition of different anions under normal light. 10 μ M solutions were prepared by dissolving respective compounds aqueous solution (1% of CH₃CN); Fluoride was added in 1 equv amount and other anions were used in greater than 50 equv amount.

Fluorescence titration studies in water

Respective Lewis acid (1/2) $(1 \times 10^{-5} \text{ M})$ was dissolved in water (1% of CH₃CN was added to enhance the solubility). The pH of solution was maintained at pH 7.0 using HEPES (6 mM) buffer. Aqueous solutions of potassium fluoride used as a fluoride source (1×10⁻³ M in HEPES buffer, pH = 7). The experiment was repeated for at least three times at 298 K to obtain concordant value. Compounds 1 or 2 were excited at 375 nm and the emissions were monitored in the range of 400-700 nm (2 nm slit width kept constant for both source and detector)

Figure S50: Changes associated with PL spectra of **1** (aqueous solution (1% of CH₃CN was added to enhance the solubility), 10 μ M) in the presence of fluoride ions (KF, 1.5×10^{-3} M)(λ_{ex} at 375 nm) (left). Changes associated with PL spectra of **1** (right) in presence of various anions (λ_{ex} at 375 nm) (right).

Figure S51: Photograph demonstrating the emission changes associated with **1** (above) and **2** (down) in presence of different anions under UV-light. Concentrations of solutions were 10 μ M in aqueous solution (1% of CH₃CN was added to enhance the solubility). Fluoride was added in 1 equv amount and other anions were used in greater than 50 equv amount.

Figure S52: Demonstration of extraction of aqueous inorganic fluoride. Left side vial (before shaking): bottom green layer is the DCM solution of compound **2**, colorless top layer is the aqueous KF. Right side vial (after shaking): Visible colour change for the DCM layer from green to yellow clearly indicates that fluoride ions are extracted from aqueous layer.

Determination of Binding Constant²

Solution of (Solvent, Acetonitrile or 1:1 Acetonitrile and water (1% CH3CN was added to enhance the solubility) compounds **1** or **2** (2 mL, 1×10^{-5} M) were placed in a septa screw capped quartz cuvette and was titrated against incremental amount of fluoride ions. The change in absorbance of the band at 395 nm with respect to fluoride concentration was used for calculations.

Sensor + $F^- \leftrightarrow F^-$ sensor; here sensor is compound 1 or 2

 $I = Ks[sensor] + Kp[F \cdot sensor]$ $I_0 = Ks[sensor]_0$ $[sensor]_0 = [sensor] + [F \cdot sensor]$ $K = [F \cdot sensor] / [sensor][F]$ $I/I_0 = (1 + (Kp/Ks)K[F])/(1 + K[F]) (1 - I/I_0)/[F] \rightarrow K(I/I_0) - K(Kp/Ks)I/I_0 = 1 + K (1 - I/I_0)/[F]$

Here, I_0 is initial absorbance of respective band (395 nm), I is absorbance of respective band upon addition of 1.0 equv of Fluoride. The association constant was obtained from the slope of $(1 - I/I_0)/[F]^-$ Vs I/I₀.

Determination of quenching efficiency

Solution of (Acetonitrile or 1:1 ratios of CH₃CN and H₂O or in water (1% CH₃CN was added to enhance the solubility)) compounds **1** or **2** (2 mL, 1×10^{-5} M) were placed in a septa screw capped quartz cuvette and was titrated against incremental amount of fluoride ions and monitored change in fluorescence band at ~495 nm. Fluorescence quenching efficiency for **1** and **2** were calculated by the following equation.

$\eta = (I_0 - I)/I_0 \ge 100\%$

Where, I_0 is the initial PL intensity of the sensors (1 or 2) and I is the intensity after addition of 1 equivalent of fluoride.

Compounds	Quenching efficiency (%)				
	CH ₃ CN	1:1 /(H ₂ O:CH ₃ CN)	Water		
1	89	60	23		
2	96	92	83		

Table S6: The	quenching	efficiency	/ of 1	and 2
---------------	-----------	------------	---------------	-------

Calculation of Limit of Detection (LoD)

The limit of detection of compound **1** and **2** were calculated from the fluorescence quenching titration experiment (compounds **1** or **2** were dissolved in Acetonitrile or 1:1 ratios of CH₃CN and H₂O or in water (1% CH₃CN was added to enhance the solubility)). The intercept to X-axis (log[F⁻]) was obtained by linear fitting of the (I_{max}-I)/(I_{max}-I_{min}) vs log[F⁻], where I_{max}, I and I_{min} are the initial fluorescence intensity, PL intensity at particular concentration and PL intensity at saturation point respectively. Limit of detection were calculated using the formula, ([F] × MWPA)/1000 (multiplied by 10⁹ to get the values in ppb), where MWPA is the molecular weight of F⁻ source. The LoD of **1** and **2** is given in Table S6.

Compounds	limit of detection (ppm)				
	CH ₃ CN	1:1/ H ₂ O:CH ₃ CN	water		
1	6.2	8.1	87.2		
2	0.03	0.05	0.1		
Compounds		Association constants (×10 ⁵ M ⁻¹)		
	CH ₃ CN	1:1 /(Water:CH ₃ CN)	Water		
1	2.8	2.4	0.3		
2	3.3	3.1	2.7		

Table S7: The LoD and association constants of 1 and 2

Figure S53: $(I_{max}-I)/(I_{max}-I_{min})$ vs log[F]⁻ plots for PL data obtained for acetonitrile solutions of **1** (left) and **2** (right). For **1** and **2**, the lowest detection limits ([F⁻]) were found to be 6.2 and 0.03 ppm respectively.

Figure S54: $(I_{max}-I)/(I_{max}-I_{min})$ vs log[F]⁻ plots for PL data obtained for **1** (left) and **2** (right) in 1:1 ratio of CH₃CN:H₂O. For **1** and **2**, the lowest detection limits ([F⁻]) were found to be 8.1 and 0.05 ppm respectively.

Figure S55: $(I_{max}-I)/(I_{max}-I_{min})$ vs log[F⁻] plots for PL data obtained for **1** (left) and **2** (right) in aqueous medium. For **1** and **2**, the lowest detection limits ([F]⁻) were found to be 87.2 and 0.1 ppm respectively.

Cytotoxicity Study:

Figure S56a: Cell viability of Hela cells treated with different concentrations of 2 for 24 h.

Figure S56b: Cell viability of Hela cells treated with different concentrations of 2 for 72 h.

Figure 57: The absorption spectra of compounds 1 and 2 with various pHs.

Figure 58: The fluorescence spectra of compounds 1 and 2 under exposure to UV light conditions with varying time period.

DFT calculations:³

Figure S59: HOMO and LUMO of 1 (left) and (1+F⁻) (right) plotted with a 0.02 iso-contour value.

Figure S60: ESP surfaces of 1 and $(1+F^{-})$ and 2 and $(2+F^{-})$ (iso value = 0.0004, range = ± 0.15).

Figure S61: Change of Absorption (left) and fluorescence (right) with time upon addition of 1 eq of fluoride ions to receptor **1**

Figure S62: Change of Absorption (left) and fluorescence (right) with time upon addition of 1 eq of fluoride ions to receptor **2**

Table S8:	Coordinates	of BTP A	$A-NMe_2$
-----------	-------------	-----------------	-----------

Center	Atomi	c /	Atomic	Coordinate	es (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	6	0	-0.270759	6.662450	-1.376822
2	6	0	-1.023091	5.711688	-2.070022
3	6	0	0.623696	6.241262	-0.390554
4	6	0	-0.880024	4.354169	-1.789046
5	1	0	-1.716560	6.024871	-2.846028
6	6	0	0.760494	4.886958	-0.090805
7	1	0	1.211550	6.970776	0.160229
8	6	0	0.009791	3.930108	-0.790191
9	1	0	-1.454994	3.616055	-2.339324
10	1	0	1.447926	4.562586	0.684138
11	6	0	-0.969186	1.712211	-0.355277
12	6	0	-0.929238	0.363097	-0.759458
13	6	0	-2.165707	2.212217	0.194746
14	6	0	-2.052717	-0.441118	-0.625895
15	1	0	-0.017805	-0.039748	-1.188875
16	6	0	-3.271790	1.385141	0.335497
17	1	0	-2.212546	3.245946	0.521330
18	6	0	-3.265179	0.032317	-0.074518
19	1	0	-1.995928	-1.473244	-0.962395
20	1	0	-4.173360	1.794454	0.783634
21	5	0	-4.520526	-0.885758	0.073352
22	6	0	-4.624524	-2.198552	-0.815589
23	6	0	-5.659691	-0.471407	1.101368
24	6	0	-4.770669	-3.479762	-0.216699
25	6	0	-4.558291	-2.138212	-2.232661
26	6	0	-5.386848	-0.305029	2.482840
27	6	0	-6.990516	-0.218683	0.659257
28	6	0	-4.832466	-4.627580	-1.011130
29	6	0	-4.828598	-3.657276	1.287336
30	6	0	-4.652827	-3.309675	-2.994251
31	6	0	-4.397440	-0.833904	-2.994142
32	6	0	-6.401741	0.099316	3.362824
33	6	0	-4.038953	-0.617916	3.106156
34	6	0	-7.968322	0.194239	1.564833

35	6	0	-7.386924	-0.342228	-0.798157
36	6	0	-4.784882	-4.567352	-2.406416
37	1	0	-4.927016	-5.597792	-0.525908
38	1	0	-5.686534	-3.136448	1.724517
39	1	0	-4.907976	-4.717258	1.549715
40	1	0	-3.930998	-3.265383	1.780553
41	1	0	-4.619368	-3.233578	-4.080204
42	1	Ő	-3 339707	-0 583820	-3 142149
42	1	Ô	-4.856082	-0.905020	-3 085838
13	1	0	-4.050702	0.017446	-3.705050
44 15	6	0	-4.030703	0.017440	2.400000
45	1	0	-7.097723	0.300307	2.920107
40	1	0	-0.104410	0.200100	4.420420
4/	1	U	-4.098203	-1.552/22	3./11035
48	1	0	-3.249899	-0.761241	2.36/012
49	1	0	-3.721721	0.187790	3.779145
50	1	0	-8.973630	0.393880	1.196513
51	1	0	-6.876530	0.402303	-1.422626
52	1	0	-7.141100	-1.326560	-1.207592
53	1	0	-8.462986	-0.182798	-0.921531
54	6	0	-4.903411	-5.818105	-3.245100
55	6	0	-8.778489	0.807625	3.884003
56	1	0	-5.953797	-6.110625	-3.378898
57	1	0	-4.476071	-5.673970	-4.243105
58	1	Ő	-4 391279	-6 665754	-2 775926
50	1	ő	-9 644043	0 133031	3 853003
60	1	0	-9.044043	0.133731	1015533
60	1	0	-0.413072	1 010570	4.713333
01	ſ	0	-9.140233	1.010309	3.031/30
02 (2	0	U	1.4/4990	2.010407	-0.35/918
63	0	0	2.48//12	2.363014	-1.264597
64	0	0	1.786259	1.13638/	0.696797
65	6	0	3.773152	1.857701	-1.120756
66	1	0	2.258378	3.036362	-2.084398
67	6	0	3.067831	0.619501	0.831886
68	1	0	1.014597	0.865118	1.410332
69	6	0	4.092720	0.969938	-0.072098
70	1	0	4.545414	2.135952	-1.831257
71	1	0	3.294695	-0.054194	1.652430
72	7	0	0.162614	2.542668	-0.498134
73	1	0	-0.379511	7.719239	-1.603451
74	6	Ô	5.405975	0.444207	0.069065
75	6	ő	6 530408	-0 008677	0 188344
76	6	Ô	7 841150	-0.530073	0.327306
77	6	0	8 853381	-0.357773	0.527500
79	6	0	0.03330 4 9.170242	1 295022	1 402077
70	0	0	0.1/9242	-1.363022	1.4029//
/9	0	0	10.132030	-0.//131/	-0.480823
80	I	0	8.622703	0.392511	-1.453520
81	0	0	9.455116	-1.910456	1.540498
82	1	0	7.419355	-1.633066	2.138197
<i>83</i>	6	0	10.475430	-1.612159	0.605335
84	1	0	10.869406	-0.521340	-1.234253
85	1	0	9.657738	-2.560482	2.383285
86	6	0	12.028245	-3.105572	1.779592
87	1	0	11.441838	-4.028502	1.647085
88	1	0	13.087531	-3.367779	1.753842
89	1	0	11.810037	-2.706629	2.777921
90	6	0	12.724950	-1.937710	-0.318654
91	1	0	12.404428	-2.404183	-1.263495
92	1	Ō	12.908985	-0.873627	-0.511928
93	1	Õ	13.673981	-2.387409	-0.021076
94	7	õ	11.757637	-2.116435	0.750487
		~	/		

Table S9: Coordinates of BTPA-2NMe₂

Center	Atomic	Atomic	Coord	dinates (A	Angstron	ns)
Number	Number	Туре	Х	Y	Z	

1	6	0	-3.578029	-2.657912	0.130003
2	6	0	-3.392999	-1.527035	0.952916
3	6	0	-2.533478	-3.013084	-0.749113
4	6	0	-2.217221	-0.789978	0.903319
5	1	0	-4.179917	-1.242154	1.644447
6	6	0	-1.363929	-2.267154	-0.809768
7	1	0	-2.657679	-3.876339	-1.395579
8	6	0	-1.187859	-1.144988	0.015962
9	1	0	-2.088282	0.069268	1.553721
10	1	0	-0.576038	-2.549553	-1.500830
11	6	0	-0.009656	1.017163	-0.038332
12	6	0	1.015412	1.760522	0.579740
13	6	0	-1.064741	1.715796	-0.657411
14	6	0	0.969069	3.147793	0.583941
15	1	0	1.835264	1.240928	1.064528
16	6	0	-1.083438	3.103743	-0.653719
17	1	0	-1.857493	1.161198	-1.148551
18	6	0	-0.076976	3.875167	-0.028679
19	1	0	1.766618	3.692960	1.082337
20	1	0	-1.901457	3.613932	-1.155374
21	5	0	-0.121005	5.436440	-0.011282
22	6	0	0.727859	6.219629	1.080352
23	6	0	-1.027824	6.195799	-1.073806
24	6	0	1.703216	7.182476	0.700961
25	6	0	0.550303	5.975208	2.467706
26	6	0	-0.827293	6.042572	-2.469317
27	6	0	-2.100445	7.034392	-0.652636
28	6	0	2.456640	7.845450	1.673068
29	6	0	1.991129	7.498207	-0.753004
30	6	0	1.306365	6.681380	3.411775
31	6	0	-0.452959	4.970213	3.006754
32	6	0	-1.666608	6.697001	-3.383118
33	6	0	0.324494	5.249157	-3.057778
34	6	0	-2.919905	7.658094	-1.594202
35	6	0	-2.424945	7.246367	0.812332
36	6	0	2.269323	7.618474	3.039227
37	1	0	3.208783	8.565454	1.354323
38	1	0	1.101694	7.870144	-1.271248
39	1	0	2.774174	8.258718	-0.837014
40	1	0	2.335574	6.613409	-1.302145
41	1	0	1.136204	6.488956	4.470210
42	1	0	0.001192	3.979553	3.132375
43	1	0	-0.821979	5.286878	3.988631
44	1	0	-1.316709	4.836612	2.351779
45	6	0	-2.720841	7.506736	-2.971156
46	1	0	-1.482551	6.566210	-4.448735
47	1	0	1.104197	5.924121	-3.436094
4 8	1	0	0.792529	4.578219	-2.336106
49	1	0	-0.011405	4.643842	-3.908030
50	1	0	-3.742158	8.280344	-1.243889
51	1	0	-2.763952	6.319090	1.291885
52	1	0	-1.558007	7.601168	1.377382
53	1	0	-3.228398	7.980894	0.928590
54	6	0	3.061007	8.384534	4.072747
55	6	0	-3.617484	8.205960	-3.965649
56	1	0	2.617079	9.370909	4.264605
57	1	0	3.094388	7.851342	5.028813
58	1	0	4.092109	8.554991	3.743101
59	1	0	-3.521856	9.297098	-3.892447
60	1	0	-3.374348	7.919706	-4.993988
61	1	0	-4.673726	7.966106	-3.791129
62	6	0	1.260497	-1.091745	-0.081238
63	6	0	1.489333	-2.189086	0.764559
64	6	0	2.270572	-0.705969	-0.977690
65	6	0	2.692066	-2.881130	0.714829
66	1	0	0.716417	-2.494292	1.462826
67	6	0	3.479219	-1.388611	-1.016686
68	1	0	2.100433	0.134225	-1.643437

69	6	0	3.717602 -2.494100 -0.173235
70	1	0	2.857361 -3.725458 1.376888
71	1	0	4.251153 -1.080600 -1.715144
72	7	0	0.020221 -0.393852 -0.037528
73	6	0	4.952479 -3.197121 -0.214661
74	6	0	6.009992 -3.800880 -0.243448
75	6	0	7.242908 -4.507110 -0.270660
76	6	0	7.470408 -5.614147 0.570945
77	6	0	8.290170 -4.124835 -1.132309
78	6	0	8.673210 -6.303768 0.554522
79	1	0	6.684944 -5.929791 1.251301
80	6	0	9.496756 -4.808032 -1.156134
81	1	0	8.148428 -3.271350 -1.788786
82	6	0	9.722775 -5.925980 -0.317323
83	1	0	8.796572 -7.143416 1.227802
84	1	0	10.270661 -4.466658 -1.833019
85	6	0	12.031564 -6.106810 -1.128773
86	1	0	12.363768 -5.114468 -0.785100
87	1	0	12.874799 -6.795301 -1.048315
88	1	0	11.769789 -6.026961 -2.191097
89	6	0	11.178747 -7.653239 0.640841
90	1	0	11.180315 -7.259518 1.669511
91	1	0	10.431425 -8.454430 0.586107
92	1	0	12.155319 -8.099956 0.445244
93	7	0	10.918311 -6.625435 -0.352504
94	6	0	-4.778758 -3.416984 0.183821
95	6	0	-5.806606 -4.069300 0.224940
96	6	0	-7.003735 -4.833976 0.266682
97	6	0	-7.176836 -5.966212 -0.554059
98	6	0	-8.068104 -4.488207 1.122752
<i>99</i>	6	0	-8.343619 -6.714656 -0.522374
100	1	0	-6.377433 -6.254848 -1.230157
101	6	0	-9.238994 -5.230348 1.161777
102	1	0	-7.968571 -3.616548 1.762919
103	6	0	-9.409538 -6.374088 0.344992
104	1	0	-8.425368 -7.571407 -1.180357
105	1	0	-10.028272 -4.915393 1.833708
106	7	0	-10.567781 -7.132896 0.397140
107	6	0	-11.705594 -6.656071 1.164526
108	1	0	-12.089671 -5.690091 0.800313
109	1	0	-12.511830 -7.389242 1.101091
110	1	0	-11.447081 -6.539558 2.224248
111	6	0	-10.776476 -8.192342 -0.574826
112	1	0	-10.802936 -7.819718 -1.611027
113	1	0	-9.986795 -8.950774 -0.507870
114	1	0	-11.726841 -8.686986 -0.365859

Table S10: Coordinates of 1

Center Number	Aton Nu	nic mber	Atomic Type	Coordinate X Y	es (Angstroms) Z Z
1	6	0	3.789002	1.057393	-0.143309
2	6	0	2.709767	0.422500	0.512458
3	6	0	3.512359	2.214334	-0.906319
4	6	0	1.422284	0.916141	0.411666
5	1	0	2.900180	-0.458787	1.117332
6	6	0	2.225442	2.709285	-1.012566
7	1	0	4.323450	2.712713	-1.428400
8	6	0	1.146952	2.071069	-0.357110
9	1	0	0.615178	0.419346	0.937255
10	1	0	2.037544	3.590098	-1.615502
11	6	0	-1.292599	1.727680	-0.323766
12	6	0	-2.384728	2.139513	0.454739
13	6	0	-1.350687	0.491451	-0.986133

14	6	0	-3.498121	1.315067	0.579559
15	1	0	-2 349667	3 098410	0 962471
16	6	ő	2.312007	0 313314	0.858725
10	1	0	-2.4//922	0.176325	1 600 472
1/	I	0	-0.516441	0.170233	-1.0084/5
18	0	0	-3.584389	0.064115	-0.067990
19	1	0	-4.326997	1.644209	1.200538
20	1	0	-2.511256	-1.257227	-1.395724
21	5	0	-4.851285	-0.860229	0.078179
22	6	0	-5.781250	-0.682189	1.346935
23	6	Ô	-5 127340	-1 945061	-1 043244
23	6	ő	7 174045	0 107521	1 201/22
27	6	0	-7.174045	-0.427331	1.201433
25	0	0	-5.258410	-0.753402	2.005510
26	6	0	-5.289982	-1.588193	-2.406647
27	6	0	-5.175084	-3.331317	-0.714201
28	6	0	-7.976229	-0.238685	2.329009
29	6	0	-7.832257	-0.316124	-0.159424
30	6	0	-6.103288	-0.588840	3.769495
31	6	Ô	-3 793226	-1 028713	2 958175
22	6	ő	5 477781	2 578827	2.280754
32	0	0	-3.4/7/01	-2.3/002/	-3.360734
33	0	U	-5.30/840	-0.148920	-2.8/9403
34	6	0	-5.351799	-4.285933	-1.716341
35	6	0	-4.995124	-3.826669	0.707004
36	6	0	-7.464959	-0.323391	3.627439
37	1	0	-9.035027	-0.027096	2.190129
38	1	0	-7.737843	-1.243886	-0.732433
30	1	ő	-8 898356	_0 001474	-0.055576
10	1	0	7 200050	0.001474	0.765744
40	1	0	-7.300930	0.403009	-0.703744
41	1	U	-3.081090	-0.6/1120	4.770099
42	1	0	-3.212665	-0.099465	3.014200
<i>43</i>	1	0	-3.686152	-1.538153	3.922004
44	1	0	-3.316253	-1.653009	2.198250
45	6	0	-5.509054	-3.933785	-3.061858
46	1	0	-5.609626	-2.274678	-4.418145
47	1	Ô	-6 412353	0 139192	-3 059328
18	1	ő	-0.412555	0.561747	-2 162/08
40	1	0	4.733404	0.301747	-2.102400
49	1	0	-4.834819	-0.01/820	-3.828320
50	1	0	-5.36/169	-5.339091	-1.440387
51	1	0	-3.995916	-3.595062	1.097848
52	1	0	-5.719081	-3.375856	1.392085
53	1	0	-5.115716	-4.913486	0.755478
54	6	0	-8.364801	-0.160942	4.829141
55	6	0	-5.718626	-4.990396	-4.120387
56	1	ő	-8 974975	-1 059139	4 992598
57	1	ő	7 797090	0.01/002	5 742427
57	1	0	-/./0/009	0.014002	3.742427
38	1	U	-9.0585/1	0.0//8/3	4./00333
59	1	0	-6.685366	-5.494538	-3.993775
60	1	0	-5.699336	-4.559117	-5.126260
61	1	0	-4.945297	-5.766533	-4.070778
62	6	0	-0.373230	3.970065	-0.705026
63	6	0	0.227404	4.936429	0.113098
64	6	0	-1 212817	4 370849	-1 752098
65	6	ő	-0.001581	6 200706	-0 126149
44	1	0	-0.001301	1 6 3 1 9 6 4	-0.12014)
00	Ĩ	0	0.003190	4.021004	0.933004
0/	0	U	-1.448400	5.726820	-1.9/514/
68	1	0	-1.677923	3.618670	-2.381733
69	6	0	-0.841472	6.691143	-1.167641
70	1	0	0.465696	7.033754	0.514188
71	1	0	-2.101911	6.029264	-2.788497
72	7	0	-0.151536	2.574711	-0.460434
73	6	0	5.103158	0.550723	-0.038100
74	6	Ô	6 238707	0 111575	0 052080
75	6	ñ	7 5/2512	_0 308001	0 161776
76	4	0	0 220024	-0.370001	0.101//0
/0	0	U	ð.039934	0.23//44	-0.409311
77	6	U	7.816558	-1.570369	0.909840
78	6	0	9.933146	-0.262390	-0.362538
<i>79</i>	1	0	8.465027	1.136765	-1.050228
80	6	0	9.103832	-2.073154	1.019338
81	1	0	6.998196	-2.081486	1.404988

82	6	0	10.167477	-1.419975	0.383646
83	1	0	10.727174	0.271153	-0.869270
84	1	0	9.255106	-2.974590	1.604754
85	7	0	11.556014	-2.000415	0.531343
86	6	0	11.945734	-2.031731	1.995905
87	1	0	11.239742	-2.653401	2.543047
88	1	0	12.952835	-2.443985	2.082915
89	1	0	11.913480	-1.011661	2.379014
90	6	0	12.602642	-1.196971	-0.198930
91	1	0	13.567370	-1.679066	-0.038521
<i>92</i>	1	0	12.368242	-1.183370	-1.262706
<i>93</i>	1	0	12.623766	-0.184383	0.202308
94	6	0	11.586647	-3.407399	-0.031391
95	1	0	10.879836	-4.028948	0.514811
96	1	0	11.300910	-3.360067	-1.082354
97	1	0	12.596933	-3.806970	0.075650
98	1	0	-1.024648	7.746641	-1.346186

Table S11: Coordinates of (1+F)

NumberNumberTypeXYZ160 -1.362339 6.989277 -0.227409 260 -2.034473 6.003263 -0.953533 360 -0.314781 6.622235 0.619426 460 -1.659832 4.665686 -0.847647 510 -2.857209 6.274260 -1.609546 660 0.060801 5.285187 0.740134 710 0.203136 7.376560 1.206210 860 -0.601173 4.297103 -0.004844 910 -2.186817 3.897516 -1.403581 1010 0.857139 4.9997071 1.42058 1160 -1.323169 1.960109 0.23580 1260 -1.486784 0.975095 -0.74461 1360 -2.511467 0.038414 -0.61644 1510 -0.803541 0.941709 -1.59084 1660 -3.212493 1.053322 1.42993 1710 -2.601655 -0.735095 -1.37556 2010 -3.866795 1.068437 2.29682 2160 2.11318 3.264353 -0.45744 2260 2.11318 3.264353 -0.45744 2360 3.738531 1.210224 0.65231 2	Center	Atom	ic A	tomic	Coordinate	s (Angstroms)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Number	Nun	nber	Туре	X Y	Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	6	0	-1.362339	6.989277	-0.227409
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	0	-2.034473	6.003263	-0.953538
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6	0	-0.314781	6.622235	0.619426
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6	0	-1.659832	4.665686	-0.847647
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	0	-2.857209	6.274260	-1.609546
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	0	0.060801	5.285187	0.740134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	0	0.203136	7.376560	1.206210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	6	0	-0.601173	4.297103	-0.004841
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1	0	-2.186817	3.897516	-1.403581
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1	0	0.857139	4.999707	1.420583
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	6	0	-1.323169	1.960109	0.235803
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	6	0	-1.486784	0.975095	-0.744614
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	6	0	-2.193362	1.999390	1.329824
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	6	0	-2.511467	0.038414	-0.616446
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1	0	-0.803541	0.941709	-1.590848
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	6	0	-3.212493	1.053322	1.429939
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	1	0	-2.056638	2.758352	2.097273
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	6	0	-3.419257	0.050430	0.459718
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	1	0	-2.601655	-0.735095	-1.375508
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1	0	-3.866795	1.068437	2.296822
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	6	0	1.060835	2.485941	0.117976
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	6	0	2.113318	3.264353	-0.437941
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	6	0	1.391643	1.210224	0.652311
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	6	0	3.408359	2.791595	-0.462745
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1	0	1.888916	4.231378	-0.872029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	6	0	2.688126	0.748415	0.631138
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1	0	0.607024	0.600938	1.083489
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	6	0	3.738531	1.520171	0.069635
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	1	Ō	4.190864	3.395296	-0.913564
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	0	2.916281	-0.224705	1.055572
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	7	Ō	-0.248272	2.920769	0.124338
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	Ō	-1.659268	8.030863	-0.312155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	6	õ	5.049709	1.025551	0.033429
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	6	Ő	6.186251	0.567790	0.006431
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	6	ŏ	7.469264	0.008570	-0.025939
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	6	ŏ	8 573734	0 699641	-0 585387
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	6	ő	7 715177	1 288118	0 501519
39 1 0 8.420385 1.691662 -0.99605 40 6 0 8.977813 -1.852060 0.46653	38	6	ő	9 842046	0 137110	-0 622914
40 6 0 8.977813 -1.852060 0.46653	30	1	Ő	8 420385	1 601667	-0.022714
	<u> </u>	6	n	8 977812	-1 852060	0 466531
41 1 0 6 891482 -1 843347 0 93678	40	1	0	6 891487	-1.052000	0.936782
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41 12	6	0	10.071402	-1.04004/	-0.007415

<i>43</i>	1	0	10.641695	0.717413	-1.066290
44	1	0	9.107338	-2.846840	0.882907
45	6	0	-3.994734	-2.537374	0.153016
46	6	0	-3.098242	-3.292081	0.965863
47	6	0	-4.244048	-3.058671	-1.145964
4 8	6	0	-2.546397	-4.497052	0.510491
49	6	0	-3.667665	-4.266490	-1.570814
50	6	0	-2.825397	-5.015997	-0.753673
51	1	0	-1.868178	-5.044052	1.166905
52	1	0	-3.888343	-4.627962	-2.575686
53	6	0	-2.664174	-2.844363	2.351608
54	1	0	-2.310392	-1.808964	2.352494
55	1	0	-3.486859	-2.880656	3.069820
56	1	0	-1.852220	-3.485834	2.717952
57	6	Õ	-2.249482	-6.337229	-1.209854
58	1	Õ	-2.874128	-7.186029	-0.895415
59	1	Ő	-2 170679	-6 385495	-2 302682
60	1	ő	-1 248806	-6 507045	-0 792773
61	6	ő	-5 135661	-2 361172	-2 159374
62	1	ő	-6 193429	-2.301172	-1 883804
63	1	Ô	-0.175427	-1 207813	-2 260862
64	1	0	-5.020719	-2 823385	-2.200002
65	0	0	-3.020717	-1.131156	-3.14/720
66	6	0	-6 145001	-0.706769	2.101313 0 105203
67	6	0	-0.143771	-0.700703	0.193203
68	6	0	-0.344270	-1 5/0112	-0.392230
60	6	0	7 007001	-1.547112	0.039029
70	6	0	-7.097001	0.040202	-0.090219
70	U C	0	-0.330000 0.017411	-1.20/332	0.337201
71	0	0	-0.91/411	-0.190010	-0.43/1//
72	1	0	-0.130907	1.304031	-1.301/6/
73	1	0	-9.309201	-1.903033	0.707101
74	0	0	-3.3/1/12	1.411920	-1.103277
75	1	0	-3.033110	1.9/3/94	-0.412319
/0	1	0	-4.8000/9	0.942471	-1.810/95
70	I	0	-0.110310	2.134/2/	-1.808125
70	0	0	-10.309424	0.08/931	-0./52591
/9	1	0	-10.889158	-0.814099	-1.099407
80	1	0	-10.91/10/	0.449205	0.129538
81	I	0	-10.409588	0.851063	-1.533060
82	0	0	-0.948/40	-2.//2151	1.522060
83	1	0	-6.234040	-3.45/584	1.055466
84	1	0	-6.518404	-2.48/701	2.484888
85	1	0	-7.882201	-3.320366	1.69/346
86	5	0	-4.601520	-1.082424	0.709566
87	6	0	12.463876	-0.931726	-0.751347
88	1	0	12.554338	-0.006221	-0.183984
89	1	0	13.408542	-1.476150	-0.728915
90	1	0	12.180924	-0.720141	-1.781824
<i>91</i>	6	0	11.347469	-3.091102	-0.907833
<i>92</i>	1	0	12.337742	-3.551505	-0.914868
<i>93</i>	1	0	10.626678	-3.760677	-0.443098
94	1	0	11.025231	-2.852066	-1.921306
95	6	0	11.857182	-2.099046	1.299141
96	1	0	11.136819	-2.766531	1.767873
<i>97</i>	1	0	12.842030	-2.570301	1.269503
98	1	0	11.895714	-1.157905	1.847699
99	7	0	11.410665	-1.800890	-0.116851

Table S12: Coordinates of 2

Center Number	Aton Nu	nic mber	Atomic Type	Coor X	dinate Y	es (Angstroms) Z
1	6	0	3.778976	-2.39	6512	-0.040267
2	6	0	3.581473	-1.17	5397	-0.720406
3	6	0	2.682132	-2.96	5151	0.641880

4	6	0	2.345319	-0.551290	-0.718801
5	1	0	4.409722	-0.726387	-1.259373
6	6	0	1.446181	-2.337395	0.651590
7	1	0	2.816629	-3.895553	1.184680
8	6	0	1.254235	-1.118536	-0.030143
9	1	0	2.212392	0.382579	-1.253087
10	1	0	0.625059	-2.777902	1.206484
11	6	0	-0.000800	0.987063	-0.007567
12	6	0	-0.721024	1.680755	-0.988841
13	6	0	0.701944	1.699214	0.972654
14	6	0	-0.725779	3.073107	-0.986145
15	1	0	-1.261702	1.126205	-1.750497
16	6	0	0.671016	3.091423	0.969878
17	1	0	1.254198	1.158954	1.736296
18	6	0	-0.036539	3.820478	-0.008434
19	1	0	-1.272168	3.600636	-1.763361
20	1	0	1.198295	3.632197	1.750682
21	5	0	-0.064266	5.402368	-0.003517
22	6	0	-0.307075	6.156820	-1.369300
23	6	0	0.167953	6.150188	1.369190
24	6	0	-1.352032	7.115245	-1.493833
25	6	0	0.491669	5.897189	-2.515409
26	6	0	-0.641071	5.898863	2.507369
27	6	0	1.239327	7.080963	1.512279
28	6	0	-1.581520	7.748556	-2.717680
29	6	0	-2.267373	7.466562	-0.336993
30	6	0	0.247458	6.576996	-3.713577
31	6	0	1.652579	4.917168	-2.507094
32	6	0	-0.372310	6.541371	3.723656
33	6	0	-1.879946	5.024130	2.463633
34	6	0	1.480772	7.687330	2.745059
35	6	0	2.171551	7.420729	0.365789
36	6	0	-0.788223	7.503192	-3.842138
37	1	0	-2.398990	8.463162	-2.793529
38	1	0	-1.718923	7.938150	0.484734
39	1	0	-3.047573	8.161815	-0.661727
40	1	0	-2.768455	6.583932	0.077794
41	1	0	0.888845	6.378951	-4.570905
42	1	0	1.330637	3.906827	-2.789713
43	1	0	2.417201	5.227355	-3.227286
44	1	0	2.134192	4.835042	-1.529077
45	6	0	0.684729	7.435955	3.869290
46	1	0	-1.017583	6.339552	4.577343
47	1	0	-2.786012	5.644669	2.448188
4 8	1	0	-1.915988	4.374644	1.587335
49	1	0	-1.945539	4.389960	3.355702
50	1	0	2.315590	8.380338	2.833786
51	1	0	2.720939	6.541587	0.005857
52	1	0	1.631211	7.832654	-0.491772
53	1	0	2.915479	8.158749	0.680987
54	6	0	-1.023823	8.241734	-5.137666
55	6	0	0.962686	8.125328	5.183463
56	1	0	-0.538331	9.226616	-5.124632
57	1	0	-0.620162	7.691029	-5.993581
58	1	0	-2.091401	8.412125	-5.314152
59	1	0	0.822989	9.210456	5.099736
60	1	0	0.298115	7.764514	5.974563
61	1	0	1.996696	7.961528	5.510515
62	6	0	-1.216762	-1.139561	0.022746
63	6	0	-1.392200	-2.358477	-0.663064
64	6	0	-2.313625	-0.592048	0.717946
65	6	0	-2.618706	-3.004760	-0.652383
66	1	0	-0.566104	-2.784160	-1.222175
67	6	0	-3.540320	-1.234514	0.720668
68	1	0	-2.192699	0.341223	1.256148
69	6	0	-3.721805	-2.455137	0.035215
70	1	0	-2.741044	-3.934694	-1.198847
71	1	0	-4.373486	-0.800406	1.264231

72	7	0	0.013207 -0.450313 -0.005337
73	6	0	-4.986772 -3.095379 0.030958
74	6	0	-6.085641 -3.623009 0.032434
75	6	0	-7.373484 -4.209252 0.036012
76	6	0	-7.624696 -5.437739 -0.608466
77	6	0	-8.455111 -3.572511 0.686155
78	6	0	-8.894515 -6.008497 -0.610058
79	1	0	-6.813101 -5.948284 -1.115161
80	6	0	-9.722615 -4.136321 0.687225
81	1	0	-8.289950 -2.626393 1.189763
82	6	0	-9.945180 -5.356681 0.038098
83	1	0	-9.027040 -6.952390 -1.122793
84	1	0	-10.520283 -3.606596 1.198077
85	6	0	5.052217 -3.019975 -0.035999
86	6	0	6.156800 -3.535585 -0.036704
87	6	0	7.449697 -4.110473 -0.039154
88	6	0	7.709222 -5.339425 0.601220
89	6	0	8.527820 -3.462556 -0.684046
90	6	0	8.983459 -5.900143 0.603548
91	1	0	6.900494 -5.858385 1.103934
92	6	0	9.799747 -4.016372 -0.684380
93	1	0	8.356381 -2.515788 -1.184330
94	6	0	10.030446 -5.237536 -0.039617
95	1	0	9.122170 -6.845004 1.112836
96	1	0	10.594347 -3.478271 -1.191236
97	7	0	-11.343149 -5.933736 0.058563
98	7	0	11.432798 -5.803913 -0.059514
99	6	0	11.871650 -6.038773 -1.491971
100	1	0	11.860939 -5.093807 -2.031521
101	1	0	12.881258 -6.453437 -1.484624
102	1	0	11.172939 -6.736694 -1.953661
103	6	0	11.539766 -7.120594 0.670012
104	1	0	12.575723 -7.454543 0.607272
105	1	0	11.260717 -6.977983 1.713416
106	1	0	10.886942 -7.850990 0.193206
107	6	0	12.386406 -4.832992 0.609932
108	1	0	12.378758 -3.889260 0.068081
109	1	0	12.049506 -4.674351 1.634539
110	1	0	13.389565 -5.262970 0.596984
111	6	0	-11.777673 -6.176758 1.490943
112	1	0	-11.773039 -5.233625 2.033779
113	1	0	-12.784188 -6.598866 1.483935
114	1	0	-11.073034 -6.871093 1.949028
115	6	0	-11.441525 -7.248704 -0.675256
116	1	0	-11.165482 -7.100480 -1.718679
117	1	0	-10.782344 -7.975783 -0.202126
118	1	0	-12.474833 -7.590686 -0.611813
119	6	0	-12.305246 -4.967727 -0.605900
120	1	0	-11.971310 -4.803002 -1.630513
121	1	Ō	-13.305075 -5.405375 -0.592711
122	1	0	-12.303782 -4.025857 -0.060757

Table S13: Coordinates of (2+F)

Center Number	Ator Nu	nic mber	Atomic Type	Coordin X	ate: Y	s (Angstroms) Z
1	6	0	3.952380	-2.62304	14	-0.038994
2	6	0	3.704378	-1.32303	86	-0.539475
3	6	0	2.867382	-3.34287	75	0.509483
4	6	0	2.442359	-0.76649	04	-0.483625
5	1	0	4.522296	-0.75540	8	-0.972003
6	6	0	1.600167	-2.78868	33	0.565895
7	1	0	3.038683	-4.33492	25	0.916560
8	6	0	1.359078	-1.48504	12	0.073034

9	1	0	2.272631	0.234829 -0.860786
10	1	0	0.793667	-3.346851 1.028019
11	6	0	0.066861	0.579232 0.278591
12	6	0	-0.510134	1.332621 -0.748383
13	6	0	0.576950	1.218118 1.413796
14	6	0	-0.563234	2.720598 -0.632247
15	1	0	-0.917756	0.828064 -1.621967
16	6	0	0.509640	2.607281 1.502930
17	1	0	1.006074	0.624151 2.218507
18	6	0	-0.042232	3.408172 0.481170
19	1	0	-1.037505	3.289810 -1.427965
20	1	0	0.876317	3.102926 2.397003
21	6	0	-1.109742	-1.554737 0.185335
22	6	0	-1.302435	-2.761494 -0.525326
23	6	0	-2.211937	-0.993693 0.869639
24	6	0	-2.544691	-3.372923 -0.557410
25	1	0	-0.480256	-3.191971 -1.086061
26	6	0	-3.447860	-1.607471 0.838839
27	1	0	-2.079481	-0.065748 1.412799
28	6	0	-3.649153	-2.808462 0.118331
29	1	0	-2.680894	-4.283891 -1.132505
30	1	0	-4.282155	-1.161195 1.370781
31	7	0	0.109710	-0.866153 0.176768
32	6	0	-4.937931	-3.381278 0.059641
33	6	0	-6.079191	-3.815173 0.025686
34	6	0	-7.423965	-4.233106 -0.006959
35	6	0	-7.839258	-5.373579 -0.729358
36	6	0	-8.417959	-3.497644 0.684946
37	6	0	-9.175331	-5.758240 -0.772493
38	1	0	-7.101050	-5.957950 -1.267610
39	6	0	-9.749526	-3.877015 0.645545
40	1	0	-8.127295	-2.618280 1.249088
41	6	0	-10.133873	-5.007949 -0.086777
42	1	0	-9.432381	-6.638206 -1.348184
43	1	0	-10.471568	-3.275477 1.188556
44	6	0	-1.600645	5.524619 0.037049
45	6	0	-2.817164	5.335402 0.756134
46	6	0	-1.731566	6.046909 -1.279023
47	6	0	-4.052564	5.691956 0.198855
4 8	6	0	-2.987215	6.386673 -1.807065
49	6	0	-4.165859	6.233468 -1.081140
50	1	0	-4.957489	5.534273 0.787040
51	1	0	-3.038888	6.784825 -2.820745
52	6	0	-2.866515	4.727352 2.147792
53	1	0	-2.317780	3.781643 2.198880
54	1	0	-2.408417	5.380408 2.894181
55	1	0	-3.907155	4.537572 2.440284
56	6	0	-5.504062	6.648350 -1.648571
57	1	0	-5.747977	7.690346 -1.396457
58	1	0	-5.518613	6.572456 -2.742489
59	1	0	-6.318359	6.026330 -1.256761
60	6	0	-0.545905	6.273458 -2.201485
61	1	0	0.079085	7.108546 -1.870393
62	1	0	0.112683	5.401968 -2.259932
63	1	0	-0.893068	6.495856 -3.217882
64	9	0	-0.213424	5.175456 2.163988
65	6	0	1.180527	5.960479 0.294990
66	6	0	2.331728	5.536089 -0.417692
67	6	0	1.204144	7.307697 0.768349
68	6	0	3.412896	6.405685 -0.642190
69	6	0	2.295342	8.147924 0.520114
70	6	0	3.421380	7.718922 -0.183984
71	1	0	4.274548	6.038706 -1.200659
72	1	0	2.262562	9.172499 0.891362
73	6	0	2.495051	4.142737 -1.003224
74	1	0	2.522000	3.367847 -0.229621
75	1	0	1.680831	3.872292 -1.684029
76	1	0	3.431542	4.079705 -1.571017

77	6	0	4.596974	8.638130 -0.424588
78	1	0	4.277445	9.608486 -0.825862
<i>79</i>	1	0	5.149078	8.845743 0.502865
80	1	0	5.306546	8.201003 -1.136642
81	6	0	0.062779	7.910922 1.567228
82	1	0	-0.904417	7.750036 1.082137
83	1	0	-0.008649	7.450009 2.555771
84	1	0	0.208419	8.990441 1.691699
85	5	0	-0.149750	5.044541 0.713807
86	6	0	-11.876248	-6.607022 -0.937612
87	1	0	-11.335567	-7.452414 -0.513407
88	1	0	-12.949038	-6.799284 -0.905118
89	1	0	-11.563137	-6.429339 -1.965815
90	6	0	-12.402234	-4.236666 -0.713065
91	1	0	-13.455903	-4.521756 -0.734860
<i>92</i>	1	0	-12.269356	-3.344224 -0.104781
<i>93</i>	1	0	-12.031535	-4.053313 -1.721655
94	6	0	-12.087437	-5.649101 1.295126
<i>95</i>	1	0	-11.953060	-4.755617 1.901649
96	1	0	-13.144457	-5.919445 1.255735
<i>9</i> 7	1	0	-11.495544	-6.466563 1.707144
98	7	0	-11.600621	-5.375231 -0.113637
<i>99</i>	6	0	5.260539	-3.151582 -0.062711
100	6	0	6.411933	-3.559083 -0.084549
101	6	0	7.760171	-3.965724 -0.094509
102	6	0	8.161206	-5.233963 0.381600
103	6	0	8.770826	-3.097342 -0.576375
104	6	0	9.497966	-5.617422 0.388579
105	1	0	7.409884	-5.921265 0.754824
106	6	0	10.103815	-3.474586 -0.571403
107	1	0	8.492302	-2.117699 -0.948894
108	6	0	10.472899	-4.736278 -0.086224
109	1	0	9.742759	-6.600730 0.769695
110	I	0	10.839034	-2.768969 -0.945832
Ш	6	0	12.481631	-5.060597 -1.500232
112	1	0	12.359796	-4.057607 -1.904420
113	1	0	13.539495	-5.329497 -1.479242
114	I	0	11.915295	-5.771867 -2.101684
115	0	0	12.196267	-6.481635 0.459/43
110	1	0	11.6/4560	-7.213269 -0.156196
11/	1	U	13.2/0605	-0.003954 0.422323
118	1	U	11.848317	
119	0	U	12./09892	-4.119419 0.//7662
120	1	U	12.388411	-3.113420 0.3/3933
121	1	0	12.303282	-4.103423 1./88143
122	1	0	13./0300/	-4.399818 U.//3383
123	/	U	11.940322	-3.099812 -0.085317

Table S14: Molecular orbital of BTPA-NMe₂, BTPA-2NMe₂, 1 and 2.

$BTPA-NMe_2 \quad BTPA-2NMe_2 \qquad 1 \qquad 2$

Table S15: Comparison of water soluble main group organometallic compounds (their physical parameters associated with fluoride)

Molecule	Association constant	Detection limit
1) CF ₃ SO ₃ N H CF ₃ SO ₃ N BMes ₂	0.3×10 ⁵ M ⁻¹	87.2 ppm (this work)
2)	$2.7 \times 10^5 \mathrm{M}^{-1}$	0.1 ppm (this work)

OTf Me ₃ N Mes ^{-B} Mes		
5) ⁷	12000 ± 1100 M ⁻¹	1.04 ± 0.01 ppm
6) ⁸ OTf MesB I	$5.0 (\pm 0.5) \times 10^{\circ} \text{ M}^{-1}$	-
7) ⁹ Mes P Me	840(±50) M ⁻¹	<4 ppm
8) ⁹	2500(±200) M ⁻¹	< 4 ppm

Mes B,''Mes P Me P Me		
9) ⁹ Mes Mes Me Me	4000(±300) M ⁻¹	< 4 ppm
10) ⁹ Mes Mes	10,500(±1000) M ⁻¹	< 4 ppm
11) ¹⁰	$10\ 000 \pm 500\ \mathrm{M}^{-1}$	0.48 (±0.03) ppm (top water)
12) ¹¹	>10 ⁷ M ⁻¹	0.25 μΜ

Reference

- 1. Kim, Y.; Zhao, H.; Gabbai, F. P. Sulfonium Boranes for the Selective Capture of Cyanide Ions in Water. *Angew. Chem. Int. Ed.* **2009**, *48*, 4957-4960.
- (a) Chen, Y.; Zhao, J.; Guo, H.; Xie, L. Geometry relaxation-induced large Stokes shift in red-emitting borondipyrromethenes (BODIPY) and applications in fluorescent thiol probes. J. Org. Chem. 2012, 77, 2192-2206. (b) Liu, X. Y.; Bai, D. R.; Wang, S. Charge-Transfer Emission in Nonplanar Three-Coordinate Organoboron Compounds for Fluorescent Sensing of Fluoride. Angew. Chem. Int. Ed. 2006, 45, 5475-5478.
- Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.
- 4. M.H. Lee, T. Agou, J. Kobayashi, T. Kawashima, and F.P. Gabbai, *Chem. comm.* 2007, **11**, 1133-1135.
- 5. M. Hirai, and F.P. Gabbai, *Chem. Sci.* 2014, 5, 1886-1893.
- 6. T. W. Hudnall, and F.P. Gabbaï, J. Am. Chem. Soc. 2007, 129 (39), 11978-11986.

- I. S. Ke, M. Myahkostupov, F. N. Castellano, and F.P. Gabbai, J. Am. Chem. Soc. 2012, 134 (37), 15309-15311.
- 8. C. W. Chiu, and F. P. Gabbai, J. Am. Chem. Soc. 2006, 128 (44), 14248-14249.
- 9. Y. Kim, and F. P. Gabbaï, J. Am. Chem. Soc. 2009, 131 (9), 3363-3369.
- M. Hirai, M. Myahkostupov, F. N. Castellano, and F. P. Gabbai, *Organometallics* 2016, 35, 11, 1854–1860.
- 11. A. M. Christianson and F. P. Gabbai, Chem. Commun., 2017, 53, 2471-2474.
- 12. H. Zhao and F. P. Gabbai, Organometallics 2012, 31, 6, 2327-2335.