## **Supporting Information**

## Engineering Monodispersed 2 nm Sb<sub>2</sub>S<sub>3</sub> Particles Embedded in Porphyrin-Based MOF-Derived Mesoporous Carbon Network via the Adsorption Method to Construct High-Performance Sodium-Ion Battery Anode

Shuya Zhao<sup>1</sup>, Hongna Jia<sup>1</sup>, Yao Wang<sup>1</sup>, Na Ju<sup>1</sup>, Xinyue Zhang<sup>1</sup>, Ying Guo<sup>1</sup>, Yiming Wang<sup>1</sup>, Haipeng Wang<sup>1</sup>, Suyan Niu<sup>1</sup>, Yan mingLu<sup>2</sup>, Lin Zhu<sup>2</sup>, Hong-bin Sun<sup>\*1</sup>
<sup>1</sup> Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China. E-mail: sunhb@mail.neu.edu.cn

<sup>2</sup> Department of Physics, Northeastern University, Shenyang 110819, People's Republic of China



Figure S1 CV curves with a scan rate of 1.0 mV  $\cdot$  s<sup>-1</sup> of the CZM.



Figure S2 Galvanostatic charge-discharge curves at 0.1 A g<sup>-1</sup> of CZM.



Figure S3 SEM images of PCN-222(a) and Sb<sub>2</sub>S<sub>3</sub>/CZM(b). TEM (c, d, e, f) and images of Sb<sub>2</sub>S<sub>3</sub>/CZM. (g, h) EDS mapping analysis of Sb<sub>2</sub>S<sub>3</sub>/CZM.







Figure S5 (a-c)SEM image of the original  $Sb_2S_3/CZM$  electrode and (d-f) the  $Sb_2S_3/CZM$  electrode after 1000 cycles.

Fig. S5 shows the micro-morphology of the original electrode sheet and the electrode sheet after 1000 cycles. It can be seen from the comparison of Fig. S5a and d that the morphology of the material after 1000 cycles has no obvious fracture or agglomeration. In addition, all of the columnar particles become not as smooth as the as prepared material, indicating the formation of SEI. From Fig. S5b, e, and Fig. S5c, f we can see that a dense SEI film is formed on the surface of the electrode after cycles. As can be seen from Fig. S5f, after a long cycle test, the surface of the electrode sheet basically keeps intact. This further reveals the reason why the Sb<sub>2</sub>S<sub>3</sub>/CZM electrode has preeminent cycling stability.

Figure S6 (a) Rate capability (b) cycling performance of Sb<sub>2</sub>S<sub>3</sub>/CZM (1.0~1.2 mg cm<sup>-2</sup>).

From Fig. S6a, we can see the Sb<sub>2</sub>S<sub>3</sub>/CZM shows good rate capacity at various current rates from 1 A g<sup>-1</sup> to 10 A g<sup>-1</sup>. It delivered reversible capacities of 439, 405, 355, 319, 273, 235 mAh·g<sup>-1</sup>, When the current density returns to 1 A·g<sup>-1</sup>, the sample electrode recovers a specific capacity of 430 mAh·g<sup>-1</sup>. The results show good stability and reversibility again. At the same time, the cycling performance of Sb<sub>2</sub>S<sub>3</sub>/CZM composite was investigated at the current density of 3 A g<sup>-1</sup> for 500 cycles (Fig. S6b). The Sb<sub>2</sub>S<sub>3</sub>/CZM composite proves a relative stable cycling performance, showing a reversible capacity of 310 mAh·g<sup>-1</sup> at 3 A·g<sup>-1</sup> after 500 cycles with a high capacity retention of 87.0%.



**Figure S7** (a) XRD pattern of  $ZrO_{2.}$  (b) CV curves with a scan rate of 1.0 mV·s<sup>-1</sup> of the ZrO<sub>2</sub>. (c) Galvanostatic charge-discharge curves at 0.1 A·g<sup>-1</sup> of ZrO<sub>2</sub>. (d) Rate performance of ZrO<sub>2</sub>.

Noticing the existence of  $ZrO_2$  in  $Sb_2S_3/CZM$ , we tested the electrochemical performance of  $ZrO_2$  for illustrating its contribution. We calcined CZM at 800°C in air to remove the carbon to obtain  $ZrO_2$ . Fig.S7a illustrated the XRD pattern of  $ZrO_2$  is consistent with zirconium oxide (JCPDS 88-1007), indicating the pure phase of  $ZrO_2$ . Then we used the obtained  $ZrO_2$  to assemble the coin cells following the same procedure of  $Sb_2S_3/CZM$ . Fig.S7b shows the initial three cycles cyclic voltammetry (CV) curves of  $ZrO_2$  electrode at a scan rate of 1 mV·s<sup>-1</sup>, while the Charge-discharge profile is displayed in Fig.S7c and Fig.S7d shows the rate capacity test at various current rates from 0.1 A·g<sup>-1</sup> to 2.5 A·g<sup>-1</sup>. It delivered very poor capacities, which is no more than the contribution of conductive carbon black added. This indicates that  $ZrO_2$  has no Na ion storage capacity, and it contributes no electrochemical performance to the Sb<sub>2</sub>S<sub>3</sub>/CZM composite.

| Sample                              | Before          | cycling       | After 700cycles |               |  |
|-------------------------------------|-----------------|---------------|-----------------|---------------|--|
|                                     | $R_{f}(\Omega)$ | $Rct(\Omega)$ | $R_{f}(\Omega)$ | $Rct(\Omega)$ |  |
| Sb <sub>2</sub> S <sub>3</sub> /CZM |                 | 998           | 10              | 178           |  |
| CZM                                 |                 | 650           | 15              | 220           |  |

Table S1 The impedance parameters of the  $Sb_2S_3/CZM$  and CZM electrode before cycling and after 700 cycles

**Table S2** The rate capacity of  $Sb_2S_3/CZM$  electrode and CZM electrode.

| Current density (A g <sup>-</sup><br><sup>1</sup> ) | 0.1 | 0.25 | 0.5         | 1    | 2.5 | 3   | 5   | 7   | 10  |
|-----------------------------------------------------|-----|------|-------------|------|-----|-----|-----|-----|-----|
| Specific capacity                                   |     | 53.6 | <b>5</b> 00 | 4.40 | 410 | 270 | 220 | 202 | 244 |
| $(mAh g^{-1})$ of $Sb_2S_3/CZM$                     | 550 | 526  | 508         | 449  | 413 | 378 | 330 | 302 | 266 |
| Specific capacity                                   | 215 | 173  | 156         | 138  | 118 | 109 | 95  | 85  | 75  |
| (mAh g <sup>-1</sup> ) of CZM                       | 215 | 175  | 150         | 150  | 110 | 107 | ))  | 05  | 15  |

Table S3 The rate performance of  $Sb_2S_3/CZM$  electrode and CZM electrode.

|                                                           | 1 A g <sup>-1</sup> Vs. 0.1 A g <sup>-1</sup> | 10 A g <sup>-1</sup> Vs. 1 A g <sup>-1</sup> |
|-----------------------------------------------------------|-----------------------------------------------|----------------------------------------------|
| Capacity retention of Sb <sub>2</sub> S <sub>3</sub> /CZM | 81.6%                                         | 59.2%                                        |
| Capacity retention of CZM                                 | 64.2%                                         | 54.3%                                        |

| Ref          | sample                                     | Rate current<br>density                           | Specific capacity                                                                                                                                  | Cycle stability<br>(Capacity retention)                                                   |
|--------------|--------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| This<br>work | Sb <sub>2</sub> S <sub>3</sub> /CZM        | 0.1 A g <sup>-1</sup> ~10 A g <sup>-1</sup>       | 550mAh g <sup>-1</sup> (0.1 A g <sup>-1</sup> )<br>330mAh g <sup>-1</sup> (5 A g <sup>-1</sup> )<br>266mAh g <sup>-1</sup> (10 A g <sup>-1</sup> ) | 90.0% (1 A g <sup>-1</sup> ,500<br>cycles)<br>88.9% (3 A g <sup>-1</sup> ,1000<br>cycles) |
| 35           | $Sb_2S_3$ -Nns                             | 0.05 A g <sup>-1</sup> ~5 A g <sup>-1</sup>       | ~500 mAh g <sup>-1</sup> (0.05 A g <sup>-1</sup> )<br>~300 mAh g <sup>-1</sup> (5 A g <sup>-1</sup> )                                              | 71.8% (1 A g <sup>-1</sup> ,120<br>cycles)                                                |
| 38           | Sb <sub>2</sub> S <sub>3</sub> /C          | $0.2 \text{ A g}^{-1} \sim 6.4 \text{ A g}^{-1}$  | 700mAh g <sup>-1</sup> (0.1 A g <sup>-1</sup> )<br>180mAh g <sup>-1</sup> (6.4 A g <sup>-1</sup> )                                                 | 78.3% (0.2 A g <sup>-1</sup> ,70 cycles)                                                  |
| 39           | Sb <sub>2</sub> S <sub>3</sub> /RGO        | 0.1 A g <sup>-1</sup> ~1.5 A g <sup>-1</sup><br>1 | 367 mAh g <sup>-1</sup> (0.1 A g <sup>-1</sup> )<br>182 mAh g <sup>-1</sup> (1.5 A g <sup>-1</sup> )                                               | 74.1% (0.1 A g <sup>-1</sup> ,100<br>cycles)                                              |
| 37           | MWNTs@ Sb <sub>2</sub> S <sub>3</sub> @PPy | $0.05 \text{ A g}^{-1} \sim 5 \text{ A g}^{-1}$   | 560 mAh g <sup>-1</sup> (0.1 A g <sup>-1</sup> )<br>280 mAh g <sup>-1</sup> (5 A g <sup>-1</sup> )                                                 | 83.8% (0.1 A g <sup>-1</sup> , 85<br>cycles)                                              |
| 17           | Sb <sub>2</sub> S <sub>3</sub> @N-C/RGO-2  | $0.1 \text{ A g}^{-1} \sim 10 \text{ A g}^{-1}$   | 455 mAh g <sup>-1</sup> (0.1 A g <sup>-1</sup> )<br>201 mAh g <sup>-1</sup> (10 A g <sup>-1</sup> )                                                | 70.0% (1 A g <sup>-1</sup> ,1500<br>cycles)                                               |
| 36           | $Sb_2S_3$ @m- $Ti_3C_2T_x$                 | 0.02 A g <sup>-1</sup> ~1 A g <sup>-1</sup>       | 412 mAh g <sup>-1</sup> (0.1 A g <sup>-1</sup> )<br>255 mAh g <sup>-1</sup> (1 A g <sup>-1</sup> )                                                 | 62.0% (0.1 A g <sup>-1</sup> ,100<br>cycles)                                              |
| 34           | SNCFs                                      | $0.05 \text{ A g}^{-1} \sim 2 \text{ A g}^{-1}$   | 417 mAh g <sup>-1</sup> (0.1 A g <sup>-1</sup> )<br>244 mAh g <sup>-1</sup> (2 A g <sup>-1</sup> )                                                 | 66.0% (0.05 A g <sup>-1</sup> ,50<br>cycles)                                              |
| 40           | Sb <sub>2</sub> S <sub>3</sub> /SCS        | 0.1 A g <sup>-1</sup> ~1 A g <sup>-1</sup>        | 636 mAh g <sup>-1</sup> (0.1 A g <sup>-1</sup> )<br>263 mAh g <sup>-1</sup> (1 A g <sup>-1</sup> )                                                 | 70.8% (0.05 A g <sup>-1</sup> ,100<br>cycles)                                             |
| 41           | Sb <sub>2</sub> S <sub>3</sub> /S-CM       | 0.1 A g <sup>-1</sup> ~2 A g <sup>-1</sup>        | 801 mAh g <sup>-1</sup> (0.1 A g <sup>-1</sup> )<br>481 mAh g <sup>-1</sup> (2 A g <sup>-1</sup> )                                                 | 84.3% (0.1 A g <sup>-1</sup> ,150<br>cycles)                                              |
| 42           | Sb <sub>2</sub> S <sub>3</sub> /CNT        | 0.1 A g <sup>-1</sup> ~3 A g <sup>-1</sup>        | 874 mAh g <sup>-1</sup> (0.1 A g <sup>-1</sup> )<br>411 mAh g <sup>-1</sup> (3 A g <sup>-1</sup> )                                                 | 81.0% (0.1 A g <sup>-1</sup> , 50<br>cycles)                                              |

Table S4 The electrochemical cycle stability and rate performance of  $Sb_2S_3/CZM$  electrode with other  $Sb_2S_3$  based electrodes for SIBs from the recent published literature.

## Notes

The authors declare no competing financial interest.

## Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21872020).