Supporting Information

for

NDI integrated rotaxane/catenane and their interactions

with anions

Mandira Nandi, Somnath Bej and Pradyut Ghosh*

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India. E-mail: <u>icpg@iacs.res.in</u>

TABLE OF CONTENTS

1. Synthetic Scheme	3S
(i) Scheme S1: Synthesis of Na-PhenMC and Ca-PhenMC	
(ii) Scheme S2: Synthetic scheme of Ca-PRT	
(iii) Scheme S3: Synthetic scheme of HEXPR	
2. ESI-MS spectra of Na-PhenMC and Ca-PhenMC (Figure S1)	4S
3. Single Crystal X-ray structure of Na-PhenMC (Figure S2)	4S
5. Crystallographic details of Na-PhenMC (Table S1)	5S
6. Characterization of NDIAz (Figure S3-S6)	6S-7S
7. ESI-MS spectrum of Ca-PRT (Figure S7)	8S
8. Non-linear 1:1 curve fitting plot (Figure S8)	85
9. ¹ H and Comparative NMR spectra of Ca- PRT (Figure S9-S9a)	98
10. Characterization of HEXPR (Figure S10-S12)	10S-11S
11. ESI-MS spectrum of Ca-NDIROT and NDIROT (Figure S13-S14)	11S-12S
12. ESI-MS spectrum of Ca-NDICAT and NDICAT (Figure S15-S16)	128-138
13 . ¹ H, ¹³ C and ROESY NMR of NDIROT (Figure S17-S18a)	138-148
14. Characterization of NDI-AxSTP (Figure S19-S20)	15S
15. ¹ H, ¹³ C and ROESY NMR of NDICAT (Figure S21-S22a)	16S-17S
16. Characterization of NDIMC (Figure S23-S24)	17S-18S
17. UV-Vis and PL spectrum of NDIROT and NDICAT (Figure S25-S26)	18S-19S

18. Colorimetric changes of NDIROT and NDICAT (Figure S27)	19S
19. UV-Vis-NIR changes of NDICAT and NDIROT (Figure S28)	198
20. X-band EPR spectra of NDICAT upon addition of F ⁻ (Figure S29)	20S
21. ¹ H NMR spectra of NDIROT/NDICAT with different equivalents of F ⁻ (F S30)	igure 20S
22. Comparative PL spectra of NDIROT and NDICAT upon addition of varia (Figure S31)	ous TBAanions 21S

Synthetic Scheme

Scheme S1: Synthetic scheme of Na-PhenMC and Ca-PhenMC

Scheme S2: Synthetic scheme of Ca-PRT

Scheme S3: Synthetic scheme of HEXPR

Figure S1: ESI-MS (+ve ion) spectra of i) **Na-PhenMC** and ii) **Ca-PhenMC** at 298K. Inset picture shows the similarity between isotopic distribution pattern (dotted) and the calculated (bold) one.

Figure S2: Single Crystal X-ray structure of *Na-PhenMC* (ellipsoid model using platon version)

Compound reference	PHENMCNa
Chemical formula	C41 H33 F3 N3 Na O11 S
Formula Mass	855.75
Crystal system	Triclinic
a/Å	9.632(5)
b/Å	11.523(6)
c/Å	18.177(10)
$\alpha/^{\circ}$	90.087(19)
$\beta/^{\circ}$	93.53(2)
$\gamma/^{\circ}$	94.613(17)
Unit cell volume/Å ³	2007.0(18)
Temperature/K	150(2)
Space group	<i>P</i> 1
No. of formula units per unit cell, Z	2
Radiation type	ΜοΚα
Absorption coefficient, μ/mm^{-1}	0.170
No. of reflections measured	10968
No. of independent reflections	5249
R _{int}	0.0740
Final R_I values $(I > 2\sigma(I))$	0.0679
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1670
Final R_1 values (all data)	0.1391
Final $wR(F^2)$ values (all data)	0.2151
Goodness of fit on F^2	1.000
CCDC number	2167711

Table S1: Crystallographic details of Na-PhenMC

...

Figure S3. ESI-MS (+ve ion) spectrum of NDIAz at 298K.

Figure S4. ¹*H NMR spectrum of NDIAz in DMSO-d*₆(400*MHz*) *at 298 K.*

Figure S5. ¹³C NMR spectrum of NDIAz in DMSO-d₆(100MHz) at 298 K

Figure S6. (a) UV-Vis and (b) PL spectrum of NDIAz in CHCl₃-DMF (4:1) at 298 K.

Figure S7. ESI-MS (+ve ion) spectra of Ca-PRT. Inset picture shows the similarity between isotopic distribution pattern (dotted) and the calculated (bold) one.

Figure S8. Non-linear 1:1 curve fitting plot from UV titration experiment to determine binding constant for the formation of NDIAz (2X10⁻⁵M) and Ca-*PhenMC* (2X10⁻⁴M) in CHCl₃- DMF (4:1) at 298 K.

Figure S9. ¹H NMR spectrum of Ca-PRT in DMSO-d₆ (400MHz) at 298 K.

Figure S9a. Comparative ¹H NMR of Ca-PRT, 1:1 PhenMC-NDIAz, PhenMC and NDIAz in DMSO-d₆ (400 MHz) at 298 K.

Figure S10. ESI-MS (+ve ion) spectrum of HEXPR.

Figure S11. ¹H NMR spectrum of HEXPR in CDCl₃(400MHz) at 298 K

Figure S12. ¹³C NMR spectrum of HEXPR in CDCl₃ (100MHz) at 298 K

Figure S13. ESI-MS (+ve ion) spectrum of Ca-NDIROT

Figure S14. ESI-MS (+ve ion) spectrum of NDIROT

Figure S15. ESI-MS (+ve ion) spectrum of Ca-NDICAT

Figure S16. ESI-MS (+ve ion) spectrum of NDICAT

Figure S17. ¹H NMR spectrum of NDIROT in CDCl₃ (400MHz) at 298 K

Figure S18. ¹³C NMR spectrum of NDIROT in CDCl₃(100MHz) at 298 K

Figure S18a. ROESY spectrum of NDIROT in CDCl₃ (300MHz) at 298 K

Figure S19. ESI-MS (+ve ion) spectrum of NDI-AXSTP

Figure S20. ¹H NMR spectrum of NDI-AXSTP in CDCl₃(400MHz) at 298 K

Figure S21. ¹H NMR spectrum of NDICAT in CDCl₃ (400MHz) at 298 K

Figure S22. ¹³C NMR spectrum of NDICAT in CDCl₃ (75MHz) at 298 K

Figure S22a. ROESY spectrum of NDICAT in CDCl₃ (300MHz) at 298 K

Figure S23. ESI-MS (+ve ion) spectrum of NDIMC.

Figure S24. ¹H NMR spectrum of NDIMC in CDCl₃(400MHz) at 298 K

Figure S25. a) UV-Vis and b) PL spectrum of NDIROT in CHCl₃ at 298K

Figure S26. a) UV-Vis and b) PL spectrum of NDICAT in CHCl₃ at 298K

Figure S27. Snapshot of characteristic colour changes of (a) **NDIROT** and (b) **NDICAT** during addition 0.5 to 100 eqv. of F⁻ and CN⁻ in DMSO.

Figure S28. UV-Vis-NIR changes of (a) **NDICAT** (0.2mM) upon addition of F⁻ and (b) **NDIROT** (0.2mM) upon addition of CN⁻ in DMSO at 298K.

Figure S29. X-band EPR spectra of NDICAT (0.2 mM) in DMSO at 298 K.

Figure S30. ¹H NMR spectra of NDIROT/NDICAT (0.2 mM) after treatment with different equivalents of F^- in d₆- DMSO at 298 K.

Figure S31. Comparative PL spectra of NDIROT (0.2mM) and NDICAT (0.2mM) upon addition of various anions of TBA salts at 298K in DMSO.