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Figure S4. CV for the activated carbon at various scan rates in the potential range from -1.0 V to 

0 V.
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S5. Calculations for the loading mass 

The mass ratio was calculated from the following equations to obtain charge balance

𝑚 +

𝑚 ‒
=

𝐶𝑠 ‒ × ∆𝑉

𝐶𝑠 + × ∆𝑉
                                                                                                                                     (1)

where m+ and m‑ are masses on positive (cathode) and negative (anode) electrodes of the ASC, 

Cs+ and Cs− are specific capacitances of the electrode materials in the potential windows of ΔV- 

and ΔV+, respectively, measured against a reference electrode in the three electrode 

configurations. The mass loading ratio of the positive and negative electrodes was estimated as 

∼5.7, according to eq 1. Approximately 1.5 mg of negative electrode (AC) and 0.9 mg of positive 

electrode (MnO2@Fe3O4 nanoflower) were used to maintain the charge neutrality of ASC. 

Electrochemical assessment of ASC was carried out on the basis of total mass loading on both 

electrodes. In this study, both electrodes were obtained using the three-electrode system over a 

potential window of 0 to 0.6 V for the MnO2@Fe3O4 nanoflower cathode and 0 to -1.0 V for the 

AC anode electrode, which collectively provide a large potential window of upto 1.6 V for the 

MnO2@Fe3O4//AC nanoflower ASC device. Therefore, the initial voltage is 0 and final provided 

voltage is 1.6. So, ΔV = 1.6-0 = 1.6 V, which is fixed for our study. 

   



Table S1. Comparison of specific capacitance of MnO2@Fe3O4 nanoflowers reported to date with 

those in the present study.

Electrode materials Electrolytes Potential window 
(V)

Specific 
capacitance/ 

current density 

Ref.

MnO2@Fe3O4 
nanoflower

3 M KOH 0-0.6 1651 F.g-1 at 1 A.g-1 Present 
work

Co3O4@CNF 3 M KOH -0.2-0.6 789.9 F.g-1 at 1 A·g−1 [1]

ZnMn2O4/C 6 M KOH 0-1.2 589 F.g-1 at 1 A·g−1 [2]

ZnO/MnO 1 M Na2SO4 0-0.8 14 mF/cm2 at 0.1 
mA/cm2

[3]

ZnO/MnO2 nanowires 1 M Na2SO4 0-0.9 501 F.g-1 at 2 A·g−1 [4]

ZnMn2O4/carbon 6 M KOH -1-(-0.3) 105 F.g-1 at 0.3 A·g−1 [5]

ZnO nanocones 1 M KOH 0.1-0.6 236 F.g-1 at 1 A·g−1 [6]

NCA/Co3O4 6 M KOH -0.05-0.45 616 F·g−1 at 1.2 A·g−1 [7]

ZnO/MnO2 0.5 M Na2SO4 0-0.8 262 F·g−1 at 0.2 A·g−1 [8]

ZnO/MnO 
nanoflowers

1 M Na2SO4 0-0.9 556 F·g−1 at 1 A·g−1 [9]

ZnO-/core like MnO2 1 M Na2SO4 0-0.8 221 F·g−1 at 0.5 A·g−1 [10]

ZnO/MnO2 core/shell 1 M Na2SO4 -0.2-0.8 424 F·g−1 at 0.5 A·g−1 [11]

ZnO/MnO2 

nanocables
0.5 M Na2SO4 0-0.9 613 F·g−1 at 1.2 A·g−1 [11]

Ni-Co selenide 6 M KOH 0 to 0.6 742.4 F·g−1 at 1 mA 
cm−2

[12]

NiCo2O4 6 M KOH -0.2 to 0.6 225 C. g−1 at 0.5 A 
g−1

[13]
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