Electronic Supplementary Information (ESI)

Understanding Structure-Activity Relations and Performance of Highly Active Novel ATRP Catalysts

Konstantin W. Kröckert,^a Felix Garg,^a Michel V. Heinz,^a Justin Lange,^a Patricia P. Simões,^a Regina Schmidt,^a Olga Bienemann,^b Alexander Hoffmann^a and Sonja Herres-Pawlis^{*a}

Table of Contents

Christallographic Data and Parameters	2
Cyclic voltammogramms	6
Polymerisation kinetics	9
NMR-spectra	15
UV/Vis spectra	22
EPR-spectra	24

^b Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str.6, 44227 Dortmund (Germany).

^{a.} Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1a,

⁵²⁰⁷⁴ Aachen (Germany). E-mail: sonja.herres-pawlis@ac.rwth-aachen.de

Christallographic Data and Parameters

Fig. 51 Molecular structure of the complex in crystals of [Cu(TMGm4NMe₂py)Br₂] (C1-A) and of the cationic complex units in crystals of [Cu(TMGm4NMe₂py)₂]Br₂ (C1-B) and [Cu(DMEGm4NMe₂py)₂Br]Br·C₅H₁₂ (C2) in the solid state (ellipsoids drawn at the 50% probability level). H atoms and solvent molecules are omitted for clarity.

 $\textbf{Table S1} Crystallographic data and parameters of the Cu(II) complexes [Cu(TMGm4NMe_2py)Br_2] (\textbf{C1-A}), [Cu(TMGm4NMe_2py)_2]Br_2 (\textbf{C1-B}), [Cu(DMEGm4NMe_2py)_2Br]Br-C_{S}H_{12} (\textbf{C2}).$

Complex/Ligand	C1-A	C1-B	C2
Empirical formula	$C_{13}H_{23}Br_2CuN_5$	$C_{26}H_{46}Br_2CuN_{10}$	$C_{26}H_{42}Br_2CuN_{10}[+C_5H_{12}]$
Formula mass [g mol ⁻¹]	472.72	722.09	718.05
Crystal size [mm]	0.15 x 0.14 x 0.12	0.35 x 0.30 x 0.24	0.18 x 0.17 x 0.04
Т [К]	100(2)	100	100(2)
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P21/n	P-1	P21/c
a [Å]	8.7711(18)	9.2630(19)	12.868(3)
b [Å]	19.273(4)	9.5980(19)	21.016(4)
c [Å]	10.732(2)	10.712(2)	13.142(3)
α [°]	90	77.80(3)	90
β [°]	103.29(3)	66.20(3)	94.75(3)
γ [°]	90	83.30(3)	90
V [ų]	1765.6(7)	851.2(4)	3541.9(12)
Z	4	1	4
$\rho_{calcd.}$ [g cm ⁻³]	1.778	1.409	1.347
μ [mm ⁻¹]	5.764	3.020	2.903
λ [Å]	0.71073	0.71073	0.71073
F(000)	940	371	1468
hkl range	-10/10, -23/23, -13/13	-13/13, -14/14, -15/15	-17/18, -30/29, -18/18
Reflections collected	21006	16399	51931
Independent reflections	3465	5899	10461
R _{int.}	0.0279	0.0290	0.0781
No. parameters	196	200	360
R_1 [I \geq 2 σ (I)]	0.0532	0.0757	0.0737
wR ₂ (all data)	0.1221	0.2248	0.1757
Goodness-of-fit	1.196	1.125	1.035
Δρ _{fin} max/min [eÅ ⁻³]	2.028/-1.174	2.412/-1.835	1.124/-0.760

Fig. S2 Molecular structure of the cationic complex units in crystals of [Cu(TMG4NMe₂qu)₂Br]·C+₄H₁₀O (C3), [Cu(TMG4NMe₂qu)₂]·B···THF·CH₂Cl₂ (C3-I), [Cu(DMEG4NMe₂qu)₂Br]·B··CH₃CN (C4) and of the complex in crystals of [Cu(DMEG4NMe₂qu)Br] (C4-I) in the solid state (ellipsoids drawn at the 50% probability level). H atoms and solvent molecules are omitted for clarity.

Table S2 Crystallographic data and parameters of the Cu(II) complexes [Cu(TMG4NMe₂qu)₂Br]Br·2 C₄H₁₀O (C3) and [Cu(DMEG4NMe₂qu)₂Br]Br·CH₃CN (C4) and of the Cu(I) complexes [Cu(TMG4NMe₂qu)₂]Br·THF·CH₂Cl₂ (C3-I) and [Cu(DMEG4NMe₂qu)Br] (C4-I).

Complex	C3	C3-I	C4	C4-I
Empirical formula	$C_{32}H_{46}Br_2CuN_{10}$ [+ 2 $C_4H_{10}O$]	$C_{33}H_{48}BrCl_2CuN_{10}$ [+ C_4H_8O]	C ₃₂ H ₄₂ Br ₂ CuN ₁₀ [+ CH ₃ CN]	$C_{16}H_{21}BrCuN_5$
Formula mass [g mol ⁻¹]	794.15	799.16	790.11	426.83
Crystal size [mm]	0.62 x 0.16 x 0.15	0.18 x 0.16 x 0.14	0.28 x 0.16 x 0.10	0.14 x 0.11 x 0.06
т [К]	100(2)	100(2) 100(2)		100(2)
Crystal system	Triclinic	Orthorhombic	Triclinic	Monoclinic
Space group	ΡĪ	P212121	PĪ	P21/c
a [Å]	11.581(2)	11.531(2)	11.840(2)	14.212(3)
b [Å]	13.967(3)	14.073(3)	12.829(3)	8.3493(17)
c [Å]	14.017(3)	25.526(5)	13.614(3)	14.873(3)
α [°]	72.17(3)	90	64.90(3)	90
β [°]	85.97(3)	90	88.44(3)	106.54(3)
γ [°]	73.20(3)	90	73.15(3)	90
V [ų]	2065.8(9)	4142.5(14)	1781.3(8)	1691.7(6)
Z	2	4	2	4
$\rho_{calcd.}$ [g cm ⁻³]	1.277	1.281	1.473	1.676
μ [mm ⁻¹]	2.495	1.655	2.893	3.659
λ [Å]	0.71073	0.71073	0.71073	0.71073
F(000)	814	1656	806	864
hkl range	-13/13, -16/16, -16/16	-13/13, -17/17, -25/30	-15/15, -16/11, -17/17	-22/20, -12/12, -22/22
Reflections collected	17230	22375	26137	39814
Independent reflections	7618	7538	7747	6522
R _{int} .	0.1633	0.0450	0.0503	0.0655
No. parameters	418	436	414	212
$R_1[l\geq 2\sigma(l)]$	0.0686	0.0659	0.0567	0.0457
wR₂ (all data)	0.1599	0.1359	0.1520	0.1194
Goodness-of-fit	0.788	1.256	1.095	1.022
Absolute structure		0.003(9)		
parameter				
Δρ _{fin} max/min [eÅ ⁻³]	1.093/-1-035	0.844/-0.580	1.301/-1.183	0.906/-1.253

Fig. S3 Molecular structure of the cationic complex unit in crystals of [Cu(TMGpy)₂]Br₂ (C5) and of the ligand or the complex in crystals of TMGm4NMe₂py (L1), DMEGm4NMe₂py (L2), and [Cu(DMEGpy)Br] (C6-I) in the solid state (ellipsoids drawn at the 50% probability level). H atoms and solvent molecules are omitted for clarity. In C5 and C6-I two independent molecules per asymmetric unit are present.

Table S3 Crystallographic data and parameters of the Cu(II) complex [Cu(TMGpy) ₂]Br ₂ (C5), of the Cu(I) complex [Cu(DMEGpy)Br] (C6-I) and of the ligands TMGm4NMe ₂ py (L1)
and DMEGm4NMe2py (L2).

Complex	C5	C6-I	L1	L2
Empirical formula	$C_{22}H_{36}Br_2CuN_8$	$C_{11}H_{16}BrCuN_4$	C ₁₃ H ₂₃ N ₅	C ₁₃ H ₂₁ N ₅
Formula mass [g mol ⁻¹]	635.95	347.73	249.36	247.35
Crystal size [mm]	0.25 x 0.12 x 0.09	0.24 x 0.07 x 0.06	0.16 x 0.14 x 0.12	0.22 x 0.13 x 0.08
Т [К]	173(2)	173(2)	100(2)	100(2)
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	ΡĪ	P21/c	P21/c	P21/c
a [Å]	9.0168(7)	13.9718(8)	7.7101(15)	7.2681(15)
b [Å]	9.9820(7)	8.0130(6)	8.2333(16)	12.646(3)
c [Å]	14.8745(10)	23.5855(15)	21.676(4)	14.978(3)
α [°]	77.378(6)	90	90	90
β [°]	86.558(6)	99.071(6)	94.89(3)	103.60(3)
γ [°]	87.412(6)	90	90	90
V [ų]	1303.37(16)	2607.5(3)	1371.0(5)	1338.1(5)
Z	2	8	4	4
$\rho_{calcd.}$ [g cm ⁻³]	1.620	1.772	1.208	1.228
μ [mm ⁻¹]	3.930	4.723	0.076	0.612
λ [Å]	0.71073	0.71073	0.71073	1.54186
F(000)	646	1392	544	536
hkl range	-10/10, -12/11, -18/17	-16/16, -9/9, -28/28	-11/6, -12/11, -30/32	-8/8, -10/15, -17/12
Reflections collected	11081	20124	13904	6480
Independent reflections	4817	4842	4924	2369
R _{int.}	0.0443	0.0655	0.0311	0.0210
No. parameters	309	311	169	167
$R_1[l\geq 2\sigma(l)]$	0.0544	0.0353	0.0556	0.0441
wR2 (all data)	0.1783	0.0443	0.1520	0.1313
Goodness-of-fit	1.188	0.830	1.081	1.073
Δρ _{fin} max/min [eÅ ⁻³]	1.378/-0.699	0.923/-0.659	0.417/-0.275	0.249/-0.245

Table S4: Key bond length	is, angles and geometrical factors of	of the complexes [Cu(TMGqu)	2Br]Br, ¹ [Cu(TMGqu) ₂]Br, ¹	[Cu(DMEGqu) ₂ Br]Br ¹ and [Cu(DMEGqu) ₂]Br. ¹
---------------------------	---------------------------------------	-----------------------------	--	--

Cu-N _{GUA} (L1) Cu-N _{GUA} (L2) Cu-N _{qu} (L1) Cu-N _{qu} (L2) Cu-Br (1) C _{GUA} =N _{GUA} (L1) C _{GUA} =N _{am} (L1) (Ø) C _{GUA} =N _{GUA} (L2)	2.051(7) 2.052(7) 1.971(7) 1.979(7) 2.663(2) 1.34(2) 1.35(2)	Bond lengths [Å] 2.118(2) 2.125(2) 1.987(2) 1.974(2) - 1.326(2)	2.052(5) 2.125(4) 1.958(5) 1.956(4) 2.593(1)	2.101(2) 2.116(2) 1.968(3) 1.963(3)		
$\begin{array}{c} Cu-N_{GUA} \ (L1) & \\ Cu-N_{GUA} \ (L2) & \\ Cu-N_{qu} \ (L1) & \\ Cu-N_{qu} \ (L2) & \\ Cu-Br \ (1) & \\ C_{GUA}=N_{GUA} \ (L1) & \\ C_{GUA}=N_{GUA} \ (L1) \ (\not{O}) & \\ C_{GUA}=N_{GUA} \ (L2) & \\ \end{array}$	2.051(7) 2.052(7) 1.971(7) 2.663(2) 1.34(2) 1.35(2)	2.118(2) 2.125(2) 1.987(2) 1.974(2) - 1.326(2)	2.052(5) 2.125(4) 1.958(5) 1.956(4) 2.593(1)	2.101(2) 2.116(2) 1.968(3) 1.963(3)		
$\begin{array}{c} Cu-N_{GUA} \ (L2) \\ Cu-N_{qu} \ (L1) \\ Cu-Br \ (L2) \\ Cu-Br \ (1) \\ C_{GUA}=N_{GUA} \ (L1) \\ C_{GUA}=N_{am} \ (L1) \ (\not{O}) \\ C_{GUA}=N_{GUA} \ (L2) \end{array}$	2.052(7) 1.971(7) 1.979(7) 2.663(2) 1.34(2) 1.35(2)	2.125(2) 1.987(2) 1.974(2) - 1.326(2)	2.125(4) 1.958(5) 1.956(4) 2.593(1)	2.116(2) 1.968(3) 1.963(3)		
Cu-N _{qu} (L1) Cu-N _{qu} (L2) Cu-Br (1) C _{GUA} =N _{GUA} (L1) C _{GUA} -N _{am} (L1) (Ø) C _{GUA} =N _{GUA} (L2)	1.971(7) 1.979(7) 2.663(2) 1.34(2) 1.35(2)	1.987(2) 1.974(2) - 1.326(2)	1.958(5) 1.956(4) 2.593(1)	1.968(3) 1.963(3)		
Cu-Nqu (L2) Cu-Br (1) C _{GUA} =N _{GUA} (L1) C _{GUA} =N _{am} (L1) (Ø) C _{GUA} =N _{GUA} (L2)	1.979(7) 2.663(2) 1.34(2) 1.35(2)	1.974(2) - 1.326(2)	1.956(4) 2.593(1)	1.963(3)		
Cu-Br (1) C CGUA=NGUA (L1) C CGUA-Nam (L1) (Ø) C CGUA=NGUA (L2) C	2.663(2) 1.34(2) 1.35(2)	- 1.326(2)	2.593(1)	-		
$\begin{array}{l} C_{GUA}=N_{GUA} \ (L1) \\ C_{GUA}-N_{am} \ (L1) \ (\not{O}) \\ C_{GUA}=N_{GUA} \ (L2) \end{array}$	1.34(2) 1.35(2)	1.326(2)				
C _{GUA} -N _{am} (L1) (Ø) C _{GUA} =N _{GUA} (L2)	1.35(2)		1.349(7)	1.318(4)		
C _{GUA} =N _{GUA} (L2)		1.363(2)	1.336(8)	1.352(4)		
	1.37(2)	1.327(2)	1.341(8)	1.314(4)		
$C_{GUA}-N_{am}$ (L2) (Ø)	1.35(2)	1.356(2)	1.341(9)	1.353(4)		
Bond angles [°]						
Ngua (L1)-Cu-Ngua (L2)	131.4(3)	127.0(1)	127.8(1)	127.8(1)		
N _{qu} (L1)-Cu-N _{qu} (L2)	174.8(3)	150.9(1)	178.7(2)	153.8(1)		
N _{GUA} (L1)-Cu-Br (1)	127.4(2	-	137.8(2)	-		
		Geometrical factors				
74 ^[a]	-	0.58	-	0.55		
τ ₅ [b]	0.72	-	0.68	-		
$ ho^{[c]}$	1.01	0.98	1.01	0.97		
∡ (CuN2 (L1/L2)) [°]	50.2(2)	65.6(1)	57.0(2)	63.5(1)		
[a] $\tau_4 = \frac{360^{\circ} - (\alpha + \beta)}{141}$. A τ_4 value of 0 is for	ound in ideal square planar con	nplexes where a $ au_4$ value of 1 is f	ound in ideal tetrahedral complexes.	2		
[b] $\tau_{\rm E} = \frac{(\alpha - \beta)}{1 + 1}$, A $\tau_{\rm E}$ value of 0 is found i	in ideal square-based pyramida	al complexes where a $\tau_{\rm s}$ value of	of 1 is found in ideal trigonal bipyran	nidal complexes. ³		
$\begin{bmatrix} c \end{bmatrix} a = \frac{2a}{2} \text{ with } a = d(C - N) \text{ and}$	b = d(C - N) Average	a avalues of two guanidino mois	tios 4	·· ·· p · · · ·		

Cyclic voltammogramms

Table S5 Additional data and par [Cu(TMGm4NMe2py)2]Br2 (C1-B) comp Comp <thcomp< th=""> <thcomp< th=""> Comp<th>ameters to the cyclic voltan lex solution in MeCN.</th><th>nmograms of the [Cu(TMGm4N</th><th>Me₂py)₂]*/[Cu(TMGm4NMe₂py)₂]²⁺</th><th>couple starting from a 1 mM</th></thcomp<></thcomp<>	ameters to the cyclic voltan lex solution in MeCN.	nmograms of the [Cu(TMGm4N	Me ₂ py) ₂]*/[Cu(TMGm4NMe ₂ py) ₂] ²⁺	couple starting from a 1 mM
	20 mV/s	50 mV/s	100 mV/s	200 mV/s
E _{ox} vs. SCE [V]	-0,422	-0,418	-0,414	-0,410
Ered vs. SCE [V]	-0,509	-0,519	-0,525	-0,535
<i>E</i> _{1/2} vs. SCE [V]	-0,465	-0,468	-0,469	-0,472
ΔE [V]	0,087	0,101	0,111	0,125
I _{ox} [A]	8,53 × 10⁻7	1,28 × 10 ⁻⁶	1,68× 10 ⁻⁶	2,12× 10⁻ ⁶
Ired [A]	-9,04 × 10 ⁻⁷	-1,46 × 10 ⁻⁶	-1,96 × 10⁻ ⁶	-2,57 × 10⁻6
I _{red} /I _{ox}	-1,06	-1,14	-1,17	-1,21
Current function (ox)	6,03 × 10⁻6	5,72 × 10 ⁻⁶	5,30 × 10 ⁻⁶	4,75 × 10 ⁻⁶
[µA V ^{-0.5} s ^{0.5} mmol ⁻¹ l]				
Current function (red)	-6,39 × 10 ⁻⁶	-6,53 × 10 ⁻⁶	-6,21 × 10 ⁻⁶	-5,74 × 10 ⁻⁶
[µA V ^{-0.5} s ^{0.5} mmol ⁻¹ l]				

Fig. S4 Cyclic voltammograms with various scan rates of the $[Cu(DMEGm4NMe_2py)_2]^+/[Cu(DMEGm4NMe_2py)_2]^2^+$ couple starting from a 1 mM $[Cu(DMEGm4NMe_2py)_2Br]Br$ (C2) complex solution in MeCN.

Fig. S5 Cyclic voltammograms with various scan rates of the $[Cu(TMG4NMe_2qu)_2]^+/[Cu(TMG4NMe_2qu)_2]^{2+}$ couple starting from a 1 mM $[Cu(TMG4NMe_2qu)_2Br]Br$ (C3) complex solution in MeCN.

Fig. S6 Cyclic voltammograms with various scan rates of the [Cu(DMEG4NMe₂qu)₂]⁺/[Cu(DMEG4NMe₂qu)₂]²⁺ couple starting from a 1 mM [Cu(DMEG4NMe₂qu)₂Br]Br (C4) complex solution in MeCN.

Fig. S7 Cyclic voltammograms with various scan rates of the [Cu(TMGpy)₂]⁺/[Cu(TMGpy)₂]²⁺ couple starting from a 1 mM [Cu(TMGpy)₂]Br₂ (C5) complex solution in MeCN.

Fig. S8 Cyclic voltammograms with various scan rates of the [Cu(DMEGpy)₂]⁺/[Cu(DMEGpy)₂]²⁺ couple starting from a 1 mM [Cu(DMEGpy)₂Br]Br (C6) complex solution in MeCN.

Polymerisation kinetics

Standard ATRP experiments

	Ligand	CuBr	EBiB	Styrene	Ratio (C/I/M)
L1	0.38 mmol	0.19 mmol	0.19 mmol	19 mmol	1/1/100
L1	0.19 mmol	0.095 mmol	0.19 mmol	19 mmol	0.5/1/100
L1	0.038 mmol	0.19 mmol	0.19 mmol	19 mmol	0.1/1/100
L2	0.38 mmol	0.19 mmol	0.19 mmol	19 mmol	1/1/100
L2	0.19 mmol	0.095 mmol	0.19 mmol	19 mmol	0.5/1/100
L2	0.038 mmol	0.19 mmol	0.19 mmol	19 mmol	0.1/1/100
3	0.38 mmol	0.19 mmol	0.19 mmol	19 mmol	1/1/100
L3	0.19 mmol	0.095 mmol	0.19 mmol	19 mmol	0.5/1/100
L 4	0.38 mmol	0.19 mmol	0.19 mmol	19 mmol	1/1/100
L4	0.19 mmol	0.095 mmol	0.19 mmol	19 mmol	0.5/1/100

Fig. S11 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for styrene ATRP experiments with the CuBr/(TMGm4NMe₂py)₂ catalyst system. Conditions: Styrene/EBiB/Cat. = 100/1/0.1 in benzonitrile at 110 °C.

Fig. S12 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for styrene ATRP experiments with the CuBr/(DMEGm4NMe₂py)₂ catalyst system. Conditions: Styrene/EBiB/Cat. = 100/1/1 in benzonitrile at 110 °C.

Fig. S13 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for styrene ATRP experiments with the CuBr/(DMEGm4NMe₂py)₂ catalyst system. Conditions: Styrene/EBiB/Cat. = 100/1/0.5 in benzonitrile at 110 °C.

Fig. S14 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for styrene ATRP experiments with the CuBr/(DMEGm4NMe₂py)₂ catalyst system. Conditions: Styrene/EBiB/Cat. = 100/1/0.1 in benzonitrile at 110 °C.

Fig. S15 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for styrene ATRP experiments with the CuBr/(TMG4NMe₂qu)₂ catalyst system. Conditions: Styrene/EBiB/Cat. = 100/1/1 in benzonitrile at 110 °C.

Fig. S16 Semilogarithmic plot of conversion vs. time (left) and M_n/\mathcal{D} vs. conversion (right) for styrene ATRP experiments with the CuBr/(TMG4NMe₂qu)₂ catalyst system. Conditions: Styrene/EBiB/Cat. = 100/1/0.5 in benzonitrile at 110 °C.

Fig. S17 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for styrene ATRP experiments with the CuBr/(DMEG4NMe₂qu)₂ catalyst system. Conditions: Styrene/EBiB/Cat. = 100/1/1 in benzonitrile at 110 °C.

Fig. S18 Semilogarithmic plot of conversion vs. time (left) and M_n/∂ vs. conversion (right) for styrene ATRP experiments with the CuBr/(DMEG4NMe₂qu)₂ catalyst system. Conditions: Styrene/EBiB/Cat. = 100/1/0.5 in benzonitrile at 110 °C.

ICAR ATRP experiments

 Table S7 Used amounts of chemicals and ratios for ICAR ATRP experiments of styrene in benzonitrile.

	Ligand	CuBr ₂	EBiB	Styrene	AIBN	Ratio (C/I/M/AIBN)
L1 ^[a]	0.19 mmol	0.095 mmol	0.19 mmol	19 mmol	0.285 mmol	0.5/1/100/1.5
L1 ^[a]	0.038 mmol	0.19 mmol	0.19 mmol	19 mmol	0.285 mmol	0.1/1/100/1.5
L1 ^[b]	0.038 mmol	0.19 mmol	0.19 mmol	19 mmol	0.285 mmol	0.1/1/100/1.5
L2 ^[a]	0.038 mmol	0.19 mmol	0.19 mmol	19 mmol	0.285 mmol	0.1/1/100/1.5
L2 ^[b]	0.038 mmol	0.19 mmol	0.19 mmol	19 mmol	0.285 mmol	0.1/1/100/1.5
-	-	-	0.19 mmol	19 mmol	0.285 mmol	0/1/100/1.5

[a] T = 60°C, [b] T = 110°C,

Fig. S19 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for ICAR ATRP experiments of styrene with the CuBr₂/(TMGm4NMe₂py)₂ catalyst system. Conditions: Styrene/EBiB/Cat./AIBN = 100/1/0.5/1.5 in benzonitrile at 60 °C.

Fig. S20 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for ICAR ATRP experiments of styrene with the CuBr₂/(TMGm4NMe₂py)₂ catalyst system. Conditions: Styrene/EBiB/Cat./AIBN = 100/1/0.1/1.5 in benzonitrile at 60 °C.

Fig. S21 Semilogarithmic plot of conversion vs. time (left) and M_0/D vs. conversion (right) for ICAR ATRP experiments of styrene with the CuBr₂/(TMGm4NMe₂py)₂ catalyst system. Conditions: Styrene/EBiB/Cat./AIBN = 100/1/0.1/1.5 in benzonitrile at 110 °C.

Fig. S22 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for ICAR ATRP experiments of styrene with the CuBr₂/(DMEGm4NMe₂py)₂ catalyst system. Conditions: Styrene/EBiB/Cat./AIBN = 100/1/0.1/1.5 in benzonitrile at 60 °C.

Fig. S23 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for ICAR ATRP experiments of styrene with the CuBr₂/(DMEGm4NMe₂py)₂ catalyst system. Conditions: Styrene/EBiB/Cat./AIBN = 100/1/0.1/1.5 in benzonitrile at 110 °C.

Fig. S24 Semilogarithmic plot of conversion vs. time (left) and M_n/D vs. conversion (right) for the ICAR ATRP reference experiment of styrene. Conditions: Styrene/EBiB/Cat./AIBN = 100/1/0/1.5 in benzonitrile at 60 °C.

| 15

Fig. S29 ¹H-NMR spectrum (top) and DOSY spectrum (bottom) of the proposed complex structures of CuBr + 2 eq. TMGm4NMe₂py in MeCN-d₃. *: MeCN-d₃.

Fig. S30 ¹H-NMR (top) and ¹³C-NMR (bottom) spectrum for [Cu(TMG4NMe₂qu)₂]Br (C3-I) in MeCN-d₃. *: MeCN-d₃.

UV/Vis spectra

Fig. S32 UV/Vis spectra of 5 mM CuBr₂ (left) and CuBr (right) in MeCN with one or two added equivalents of TMGm4NMe₂py (L1).

Fig. S33 UV/Vis spectra of 2.5 mM C1-B and C2 complex solutions in MeCN (left) and in the solid state (right).

Fig. S34 UV/Vis spectra of 2.5 mM C3 and C4 complex solutions in MeCN (left) and in the solid state (right).

Fig. S36 UV/Vis spectra of various 2.5 mM complex solutions in MeCN.

EPR-spectra

Fig. S37 Experimental X-band EPR spectra of frozen 5 mM C2 complex solution in MeCN at 77 K.

Fig. S38 Experimental X-band EPR spectra of frozen 5 mM C3 complex solution in MeCN at 77 K.

Fig. S39 Experimental X-band EPR spectra of frozen 5 mM C4 complex solution in MeCN at 77 K.

Fig. S40 Experimental X-band EPR spectra of frozen 5 mM C5 complex solution in MeCN at 77 K.

Fig. S41 Experimental X-band EPR spectra of frozen 5 mM C6 complex solution in MeCN at 77 K.

Table S8 Landé g factors and A	values of the CuBr ₂ com	plexes C1-B, C2, C3,	C4, C5 and C6
--------------------------------	-------------------------------------	----------------------	---------------

	C1-B	C2	C3	C4	C5	C6
g 1	1.98	g _{iso} =				
g ₂	2.06	2,249	2,249	2,294	2,294	2,241
g₃	2.21					
A1[G]	46					
A ₂ [G]	1					
A₃ [G]	152					

Notes and references

- 1 T. Rösener, O. Bienemann, K. Sigl, N. Schopp, F. Schnitter, U. Flörke, A. Hoffmann, A. Döring, D. Kuckling, S. Herres-Pawlis, *Chem. Eur. J.* **2016**, *22*, 13550-13562.
- 2 L. Yang, D. R. Powell, R. P. Houser, *Dalton Trans.* 2007, 955-964.
- 3 A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349-1356.
- 4 V. Raab, K. Harms, J. Sundermeyer, B. Kovačević, Z. B. Maksić, J. Org. Chem. 2003, 68, 8790-8797.