Supporting information

Investigation of Li-excess Manganese Oxide Spinel Structure for

Electrochemical Water Oxidation Catalysis

Deepika Tavar^{a,b}, Kamlesh^{a,b}, Satya Prakash^{a,b}, Mohammad Ashiq^{a,b}, Pradeep Singh^c, Pankaj Raizada^c, R.K. Sharma^d, A.K.Srivastava^{a,b}, Archana Singh^{a,b,*},

^aAcademy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India

^bCSIR- Advanced Material and Processes Research Institute, Bhopal 462026, India

°School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan (HP), India—173229

^dRaja Ramanna Research Center, Indore, India

*archanasingh@ampri.res.in

	Atoms	Site	Х	у	Z		
	Mn1	16d	0.5	0.5	0.5		
λMnO_2	01	32e	0.26339	0.26339	0.26339		
	a=8.0568, cell vo	lume=522.983	3,		·		
	Rp=31.2%, Rwp=	=19.3%, GOF	=1.61				
	Lil	8a	0.125	0.125	0.125		
	Mn1	16d	0.5	0.5	0.5		
LiMn ₂ O ₄	01	32e	0.264	0.264	0.264		
	a=8.1851, cell volume=548.367,						
	Rp=15.04%, Rwp=22%, GOF=2.13						
	Li	16d	0.0	0.0	0.0		
Li ₄ Mn ₅ O ₁₂	L1	8a	0.37500	0.37500	0.37500		
	Mn	16d	0.0	0.0	0.0		
	Mn	8a	0.37500	0.37500	0.37500		
	0	32e	0.24680	0.24680	0.24680		
	a=8.1377, cell volume=538.896,						
	Rp=5.07%, Rwp=2.73%, GOF=1.78						

Table S1. Rietveld refined Structural parameter of $Li_4Mn_5O_{12}$, $LiMn_2O_4$, λ -MnO₂

Table S2. ICP-MS analysis result for the $Li_4Mn_5O_{12}$, $LiMn_2O_4$. The amounts of Li and Mn shown below are in gram obtained for 1 g of $Li_4Mn_5O_{12}$, $LiMn_2O_4$.

Li/Mn(molar ratio)	Prepared using γ-MnOOH in LiNO ₃ medium Li ₄ Mn ₅ O ₁₂		Prepared using γ-MnOOH in LiOH medium LiMn ₂ O ₄	
1:1	Li	Mn	Li	Mn
	0.047	0.682	0.051	0.7931

Fig. S0. Instrumental broadening against 20 for standard Silicon powder

Fig. S1. SEM images of (a) $Li_4Mn_5O_{12}$ at $5\mu m$, (b) $Li_4Mn_5O_{12}$ at 500nm, (c) $LiMn_2O_4$ at $5\mu m$ and (d) $LiMn_2O_4$ at 500 nm.

Fig. S2. Overpotential at Current density 5mA/cm²

Fig. S3. Nyquist plots of (a) $Li_4Mn_5O_{12}$, (b) $LiMn_2O_4$, (c) λ -MnO₂ and (d) equivalent circuit.

Compound	Binding energy position (eV)		Cation di	Mn valence	
	Mn ⁴⁺	Mn ³⁺	Mn ⁴⁺ (%)	Mn ³⁺ (%)	_
Li ₄ Mn ₅ O ₁₂	642.8	642.0	84.95%	15.05%	+3.84
LiMn ₂ O ₄	642.2	641.2	50.24%	49.76%	+3.5
λ -MnO ₂	642.2	641.9	87.14%	12.86%	+3.84

Table S3. XPS Mn2p peak data of $Li_4Mn_5O_{12}$, $LiMn_2O_4$ and λ -MnO₂ before testing

Table S4. XPS Mn2p peak data of $Li_4Mn_5O_{12}$ after testing

Compound	Binding energy position		Cation distribution		Mn valence
	(eV)				
-	Mn ⁴⁺	Mn ³⁺	Mn ⁴⁺ (%)	Mn ³⁺ (%)	-
Li ₄ Mn ₅ O ₁₂	641.8	640.78	91.78%	8.22	+3.91

Table S5. XPS peak fitting results of $O1_S$ core levels of $Li_4Mn_5O_{12}$, $LiMn_2O_4$ and λ -MnO₂ before testing.

Spinel oxide	O ²⁻ [%]	O ₂ ^{2-/} O ⁻ [%]	OH⁻ [%]	H ₂ O [%]
Li ₄ Mn ₅ O ₁₂	23.43	50.06	24.09	2.43
LiMn ₂ O ₄	25.87	15.83	53.74	4.56
λ -MnO ₂	6.20	32.33	37.89	23.58

Spinel oxide	O ²⁻ [%]	O ₂ ²⁻ /O ⁻ [%]	OH⁻ [%]	H ₂ O [%]
Li ₄ Mn ₅ O ₁₂	13.66	53.40	25.27	7.67

Table S6. XPS peak fitting results of $O1_S$ core levels of $Li_4Mn_5O_{12}$ after testing

Compound	TOF (s^{-1})	pН	BET $(m^2 g^{-1})$	Ref
α-MnO ₂	1×10 ⁻⁵	7	62	[1]
λ -MnO ₂ (HT)	5×10-6	7	-	[2]
λ -MnO ₂ (LT)	3×10-5	7	-	[2]
δ-MnO ₂	2×10-5	7	96	[3]
MnO _x (amorphous)	5.5×10 ⁻⁵	7.2	88	[4]
MnO	2×10-5	7	11	[5]
Mn ₂ O ₃ (bixbyite)	3.7×10 ⁻⁴	7	16.27	[6]
Mn ₃ O ₄	3×10 ⁻⁴	7	14	[4]
δ -MnO ₂ -Mn ₃ O ₄ nanocomposite(MnO _x -2)	9.3×10 ⁻⁴	5.8	112	[3]
$\frac{K_{0.16}MnO_{1.97} \cdot 0.14H_2O}{(cryptomelane)}$	5.3×10 ⁻⁵	5-6	140	[4]
LiMn ₂ O ₄ (spinel)	LOD*	7	24.5	[6]

Table S7: Comparison of Turn over frequency (TOF) number for various Mn-O based catalyst (mol O₂/s/mol)

 $LOD = 0.05 \text{ nmol } O2 \text{ s}^{-1}$

References

[1] D. Hong, Y. Yamada, A. Nomura, S. Fukuzumi, Catalytic activity of NiMnO 3 for visible light-driven and electrochemical water oxidation, Physical Chemistry Chemical Physics, 15 (2013) 19125-19128.

[2] D.M. Robinson, Y.B. Go, M. Greenblatt, G.C. Dismukes, Water oxidation by λ -MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4, Journal of the American Chemical Society, 132 (2010) 11467-11469.

[3] Z. Geng, Y. Wang, J. Liu, G. Li, L. Li, K. Huang, L. Yuan, S. Feng, δ -MnO2–Mn3O4 nanocomposite for photochemical water oxidation: Active structure stabilized in the interface, ACS Applied Materials & Interfaces, 8 (2016) 27825-27831.

[4] A. Iyer, J. Del-Pilar, C.K. King'ondu, E. Kissel, H.F. Garces, H. Huang, A.M. El-Sawy, P.K. Dutta, S.L. Suib, Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures, The Journal of Physical Chemistry C, 116 (2012) 6474-6483.

[5] P.W. Menezes, A. Indra, P. Littlewood, M. Schwarze, C. Göbel, R. Schomäcker, M. Driess, Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry, ChemSusChem, 7 (2014) 2202-2211. [6] D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G.C. Dismukes, Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis, Journal of the American chemical Society, 135 (2013) 3494-3501.