Supporting Information

Homoleptic Ni(II) Dithiocarbamate Complexes as Pre-catalysts for Electrocatalytic Oxygen Evolution Reaction

Sarvesh Kumar Pal,^a Baghendra Singh,^b Jitendra Kumar Yadav,^a Chote Lal Yadav,^a Michael G. B. Drew,^c Nanhai Singh^{*},^a Arindam Indra^{*b} and Kamlesh Kumar^{*a}

^a Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India

^bDepartment of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India

^cDepartment of Chemistry, University of Reading, Whiteknights, Reading RG6,6AD, UK.

Email Address of Corresponding Authors: <u>kamlesh.kumar@bhu.ac.in</u> (Kamlesh Kumar)

arindam.chy@iitbhu.ac.in (Arindam Indra), <u>nsingh@bhu.ac.in</u> (N. Singh)

S No.	Content	Page
Fig. S1	IR spectra of potassium salt of Ligands KL1-KL4.	2-3
Fig. S2	IR spectra of complexes 1-4.	4-5
Fig. S3	¹ H, ${}^{13}C{}^{1}H{}$ potassium salt of Ligands KL1-KL4 .	6-9
Fig. S4	¹ H, ${}^{13}C{}^{1}H$ spectra of complexes 1-4	10-13
Fig. S5	CV profiles for the electrochemical activation of complex 1-4.	15
Fig. S6	LSV profile for the oxygen evolution reaction of complex 2@CC compared with	16
	Ni(II) salt derived Ni(O)OH@CC.	
Fig. S7	LSV profile for the oxygen evolution reaction of complex 2@CC in phosphate	16
	buffer	
Fig. S8	Redox peak integration for the determination of number of active sites for the	17
	complexes 1-4	
Fig. S9	Plot for the amount of theoretically calculated O ₂ (blue line) and experimentally	20
	measured O_2 (green line) versus time for complex 2. Faradaic Efficiency.	
Fig. S10	Differential pulse voltammetric profile for the complex 2 utilized for the	21
	determination of number electron transferred for the redox peak.	
Fig. S11	IR, Solid UV-Vis and Powder XRD spectra of complex 2 after electro-catalysis	22
	OER in basic medium	
Fig. S12	XPS spectra of complex 2 before catalysis.	23
Fig. S13	XPS spectra of complex 2 after catalysis.	24
Fig. S14	LSV profile for the OER of complex 2 before and after EDTA treatment in phosphate	25
	buffer solution.	
Table S1	Comparison of the OER activity in terms of overpotential of complex 2 with	14
	recently reported complexes	
Equation S1	Determination of number of active site	17-19
Equation S2	Determination of Turn Over Frequency (TOF)	19

Fig. S1a: IR Spectrum of Ligand KL-1.

Fig. S1b:IR Spectrum of Ligand KL-2

Fig. S1c: IR Spectrum of Ligand KL-3

Fig. S1d: IR Spectrum of Ligand KL-4

Fig. S2a: IR Spectrum of Complex 1

Fig. S2b: IR Spectrum of Complex 2

Fig. S2c: IR Spectrum of Complex 3

Fig. S2d: IR Spectrum of Complex 4

Fig. S3b: ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, D₂O) of Ligand KL-1

Fig. S3d: ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, D₂O) of Ligand KL-2

Fig. S3f: ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, D₂O) of Ligand KL-3

Fig. S4b: ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, CDCl₃) of complex 1

Fig. S4g: ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃) of complex 4.

Catalyst ^a	Electrolyte	Overpotential	Reference
		(mV)	
Ni[(TMC)(CH ₃ CN)](NO ₃) ₂	Phosphate buffer	590 (0.5 mA cm ⁻²)	Chem. Commun., 2019, 55, 6122– 6125.
[NiL](PF ₆) ₂	Phosphate buffer	270 (0.65 mA cm ⁻²)	Catal. Sci. Technol., 2019, 9, 5651–5659.
Ni–Hmfchce	0.1 КОН	490 (10 mA cm ⁻²)	Polyhedron, 2019, 174, 114160
Ni(II) 1,1-dithiolate-phosphine	1 М КОН	350 (10 mA cm ⁻²)	Dalton Trans., 2020, 49, 3592
Cobalt Salen Complex-4	0.1 M potassium borate	350 (0.1 mA cm ⁻²)	J. Phys. Chem. C, 2015, 119(17), 8998–9004
O=PN3-Co	0.1 M tetrabutyl ammonium perchlorate	340 (0.5 mA cm ⁻²)	Inorg. Chem., 2021, 60, 614– 622.

Table S1. Comparison of the OER activity of complex 2 with recently reported complexes.

a $[Ni(TMC)(CH_3CN)](NO_3)_2:$ where TMC 1,4,8,11-tetramethyl-1,4,8,11 =tetraazacyclotetradecane, ([NiL](PF_6)₂: where L = bis(2-pyridylmethylimidazolylidene) methane, Ni-Hmfchce: Nickel complex of N'-(2-methylfuran-3-carbonyl)hydrazine carbodithioic acid ethyl ester, Ni(II) 1,1-dithiolate-phosphine: Nickel complex of 2-(methylene-1,1'-dithiolato)-5,5'-dimethylcyclohexane-1,3-dione, Cobalt Salen Complex-4: Cobalt complex of 6,6'-((1E,1'E)-(ethane-1,2diylbis(azanylylidene))bis(methanylylidene))bis-(2,4-ditert-butylphenol), O=PN3-Co: Cobalt complex of N-(di-tert-butylphosphino)[2,2'-bipyridine]-6-amine, Co(dmgBF2)₂(OH2)₂:BF2annulated cobaloxime, $Co(dmgBF_2)_2(OH2)_2$ (Co-DMB, dmgBF₂ =difluoroboryldimethylglyoxime).

Fig. S5: CV profiles for the electrochemical activation of (a) complex 1; (b) complex 2; (c) complex 3; and (d) complex 4 (scan rate 20 mV s^{-1} , without iR correction).

Fig. S6: LSV profile for the oxygen evolution reaction of complex 2@CC compared with Ni(II) salt derived Ni(O)OH@CC in 1.0 M aqueous KOH solution. The complex 2 showed excellent OER activity compared to the Ni(O)OH (scan rate 2 mV s⁻¹).

Fig. S7: LSV profile for the oxygen evolution reaction of complex 2 in phosphate buffer (pH = 7, scan rate = 2 mV s^{-1}).

Fig. S8: Redox peak integration for the determination of number of active sites for the complexes **1-4**.

Equation S1. Determination of Number of Active Sites

The number of active sites in the complexes was calculated by the redox peak integration method.

For complex 1

Calculated area associated with the oxidation peak = 0.00711×10^{-3} V A Hence the associated charge was = 0.00711×10^{-3} V A / 0.005 V s⁻¹

=
$$1.42 \times 10^{-3}$$
 As
= 1.42×10^{-3} C

Now, the number of electron transferred was = 1.42×10^{-3} C / 1.602×10^{-19} C

$$= 0.88 \times 10^{16}$$

The number of electron calculated above was same as the number of surface active site due to single electron transfer involving Ni^{2+}/Ni^{3+} oxidation process. Hence,

The surface-active site of 1 that participated in OER = 0.88×10^{16}

For complex 2

Calculated area associated with the oxidation peak = 0.02376×10^{-3} V A Hence the associated charge was = 0.02376×10^{-3} V A / 0.005 V s⁻¹

$$= 4.75 \times 10^{-3} \text{ As}$$

= 4.75 × 10⁻³ C

Now, the number of electron transferred was = $4.75 \times 10^{-3} \text{ C} / 1.602 \times 10^{-19} \text{ C}$

$$= 2.96 \times 10^{16}$$

The number of electron calculated above was same as the number of surface active site due to single electron transfer involving Ni^{2+}/Ni^{3+} oxidation process. Hence,

The surface-active site of 2 that participated in OER = 2.96×10^{16}

For complex 3

Calculated area associated with the oxidation peak = 0.01948×10^{-3} V A Hence the associated charge was = 0.01948×10^{-3} V A / 0.005 V s⁻¹

$$= 3.89 \times 10^{-3} \text{ As}$$

= $3.89 \times 10^{-3} \text{ C}$

Now, the number of electron transferred was = 3.89×10^{-3} C / 1.602×10^{-19} C

$$= 2.43 \times 10^{16}$$

The number of electron calculated above was same as the number of surface active site due to single electron transfer involving Ni^{2+}/Ni^{3+} oxidation process. Hence,

The surface-active site of 3 that participated in OER = 2.43×10^{16}

For complex 4

Calculated area associated with the oxidation peak = 0.01043×10^{-3} V A Hence the associated charge was = 0.01043×10^{-3} V A / 0.005 V s⁻¹

$$= 2.08 \times 10^{-3} \text{ As}$$

= 2.08 × 10⁻³ C

Now, the number of electron transferred was = $2.08 \times 10^{-3} \text{ C} / 1.602 \times 10^{-19} \text{ C}$

 $= 1.29 \times 10^{16}$

The number of electron calculated above was same as the number of surface active site due to single electron transfer involving Ni^{2+}/Ni^{3+} oxidation process. Hence,

The surface-active site of 4 that participated in OER = 1.29×10^{16}

Equation S2. Determination of Turn-Over Frequency (TOF)

The TOF of the complexes can be determined using the equation:

TOF=
$$(j \times N_A) / (4 \times F \times n)$$

Where, j = current density at 330 mV N_A = Avogadro number F = Faraday constant n = number of active Ni-sites

For Complex 1: $TOF = [(2.12 \times 10^{-3}) (6.023 \times 10^{23})] / [(96485) (4) (0.88 \times 10^{16})]$ $TOF = 3.7 \times 10^{-1} s^{-1}$ For Complex 2: $TOF = [(10.00 \times 10^{-3}) (6.023 \times 10^{23})] / [(96485) (4) (2.96 \times 10^{16})]$ $TOF = 5.2 \times 10^{-1} s^{-1}$

For Complex 3: $TOF = [(4.78 \times 10^{-3}) (6.023 \times 10^{23})] / [(96485) (4) (2.43 \times 10^{16})]$ $TOF = 3.0 \times 10^{-1} s^{-1}$

For Complex 4: TOF = $[(3.52 \times 10^{-3}) (6.023 \times 10^{23})] / [(96485) (4) (1.29 \times 10^{16})]$ TOF = $4.2 \times 10^{-1} \text{ s}^{-1}$

Determination of faradaic efficiency

The amount of oxygen generated during the oxygen evolution reaction was determined by the water displacement method. The amount of O_2 was detected during the chronoamperometric measurement for 1800 s at 20 mA cm⁻² current density.¹⁻³

Firstly, the theoretical amount of O_2 was calculated using the following equation from Faraday's law.¹⁻³

 $nO_2 \text{ (theoretical)} = \frac{Q}{n \times F} = \frac{I \times t}{n \times F} = \frac{0.02 \text{ A} \times 1800 \text{ s}}{4 \times 96485.3 \text{ s} \text{ A} \text{ mol}^{-1}} = 0.00093 \text{ mmol}$

Where nO₂ denotes the theoretically calculated amount of O₂, Q is the amount of applied charge, *n* is the number of electrons participating in the OER reaction (4 electrons), *F* is the Faraday constant (96485.3 s A mol⁻¹), *I* is the applied current (0.02 A), and *t* is the reaction time (1800 s).

At the time of chronoamperometric measurements, the amount of O_2 produced during the experiment was measured and the theoretically calculated amount was compared with the actually generated amount of O_2 . Further, the faradaic efficiency was calculated using the following equation:

Faradaic efficiency (%) = $\frac{nO_2 \text{ (experimental)}}{nO_2 \text{ (Theoretical)}} \times 100 = \frac{0.000915 \text{ mmol}}{0.00093 \text{ mmol}} \times 100 = 98.3\%$ 0.0010 Theoretical Amount of O₂ gas (mmol Experimental 0.0008 0.0006 0.0004 0.0002 0.0000 15 5 10 20 25 30 Time (minutes)

Fig. S9. Plot for the amount of theoretically calculated O_2 (blue line) and experimentally measured O_2 (green line) versus time for complex **2**.

Fig. S10: Differential pulse voltammetric profile for the complex 2 utilized for the determination of number electron transferred for the redox peak.

The number of electrons could be calculated using DPV by the following equation at a constant pH.⁴⁻⁵

$$E_{p}-E_{p/2} = 2.218 \text{ RT/nF} = 57/n....(1)$$

Therefore, the equation (1) gives the number of electron transferred is

$$n = 57/E_{p}-E_{p/2}$$

where $E_p = peak$ potential of DPV

 $E_{p/2}$ = potential at which half the peak current is observed

n = number of electron(s) transferred

From DPV, the Ep was calculated to be 1.357 V while $E_{p/2}$ was determined to be 1.313 V for complex **2**.

Therefore, the number of electron transferred for the redox peak is calculated to be one.

Fig. S11: (a) Powder XRD pattern of complex **2** and after 2 h OER catalysis indicating that the molecular structure was retained after 2 h OER catalysis (b) UV-vis. spectra of complex **2** before the OER and after the 2 h OER catalysis and (c) IR spectrum of complex **2** after 2 h OER catalysis indicating the new peak at 830 cm⁻¹ assigned for the Ni-O-Ni stretching in Ni(O)OH active catalyst.

Fig. S12: (a) Ni 2p XPS of complex **2** showing the peaks at 853.8 eV and 871.1 eV assigned for the Ni $2p_{3/2}$ and Ni $2p_{1/2}$, respectively, the peak at 853.9 eV was attributed to the Ni²⁺ species; (b) C 1s spectra of complex **2** showing three peaks at 285.9 eV, 284.5 eV, and 283.3 eV corresponded to the C-N bond, aromatic C and C-H bond, respectively; (c) C 1s spectra of complex **2** indicating the peak at 398.5 eV assigned for the N-C bond; and (d) S 2p XPS indicating two peaks at 161.0 eV and 162.9 eV attributed to the S $2p_{3/2}$ and S $2p_{1/2}$, respectively.

Fig. S13: (a) Ni 2p XPS of complex **2** showing the peaks at 854.4 eV and 871.8 eV assigned for the Ni $2p_{3/2}$ and Ni $2p_{1/2}$, respectively, the peak at 853.6 eV and 855.6 eV were attributed to the Ni²⁺ and Ni³⁺ species, respectively; (b) C 1s spectra of complex **2** showing three peaks at 286.9 eV, 285.0 eV and 283.6 eV corresponded to the C-N bond, aromatic C and C-H bond, respectively; (c) C 1s spectra of complex **2** indicating the peak at 398.3 eV assigned for the N-C bond; and (d) S 2p XPS indicating two peaks at 162.3 eV and 164.2 eV attributed to the S $2p_{3/2}$ and S $2p_{1/2}$, respectively.

Fig. S14: LSV profiles for the oxygen evolution reaction of complex **2** before and after EDTA treatment. Complex **2** was activated first and treated with EDTA to remove the surface NiOOH. After the removal of surface NiOOH, LSV was recorded in phosphate buffer (pH 7).

References

1. J. Jia, L. C. Seitz, J. D. Benck, Y. Huo, Y. Chen, J. W. D. Ng, T. Bilir, J. S. Harris, T. F. Jaramillo, *Nat. Commun.* 2016, **7**, 13237.

2. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, *Nat. Mater.* 2011, **10**, 456-461.

3. I. M. Mosa, S. Biswas, A. M. El-Sawy, V. Botu, C. Guild, W. Song, R. Ramprasad, J. F. Ruslingace, S. L. Suib, *J. Mater. Chem. A* 2016, **4**, 620-631.

4. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2001, https://doi.org/10.1038/nprot.2009.120.Multi-stage.

5. D.A.C. Brownson, C.E. Banks, The handbook of graphene electrochemistry, 2014, https://doi.org/10.1007/978-1-4471-6428-9.