Supporting Information

Carbonyl Hypoiodites from Pivalic and Trimesic Acid and their Silver(I) Intermediates

Jas S. Ward,^{a*} Jevgenija Martõnova,^b Laura M. E. Wilson,^a Eric Kramer,^a Riina Aav,^b and Kari Rissanen^a

^a University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland.

^b Department of Chemistry and Biotechnology, School of Science,

Tallinn University of Technology, Tallinn, Estonia.

E-mail: james.s.ward@jyu.fi

Contents

Synthesis	S2
General Considerations	S2
Nomenclature Key	S3
Synthesis of Silver(I) Precursors	S4
Synthesis of Silver(I) Compounds	S6
Synthesis of O–I–N Compounds	S10
Comparison Tables of Chemical Shifts	S16
NMR Spectra	S17
Computational Details	S62
General Considerations	S62
DFT/XRD Comparison Table	S62
Computational Structures	S63
Cartesian Coordinates	S64
References	

Synthesis

General Considerations

All reagents and solvents were obtained from commercial suppliers and used without further purification. For structural NMR assignments, ¹H NMR and ¹H-¹⁵N NMR correlation spectra were recorded on a Bruker Avance III 500 MHz spectrometer at 25°C in CD₂Cl₂, or at 30°C in (CD₃)₂SO (DMSO melting point = 19°C). Chemical shifts are reported on the δ scale in ppm using the residual solvent signal as internal standard (CH₂Cl₂ in CD₂Cl₂: δ_{H} 5.32, δ_{C} 53.84; (CH₃)₂SO in (CD₃)₂SO: δ_{H} 2.50, δ_{C} 39.52), or for ¹H-¹⁵N NMR spectroscopy, to an external CD₃NO₂ standard. For the ¹H NMR spectroscopy, each resonance was assigned according to the following conventions: chemical shift (δ) measured in ppm, observed multiplicity, observed coupling constant (*J* Hz), and number of hydrogens. Multiplicities are denoted as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). For the ¹H-¹⁵N HMBC spectroscopy, spectral windows of 4 ppm (¹H) and 300 ppm (¹⁵N) were used, with 1024 points in the direct dimension and 512 increments used in the indirect dimension, with subsequent peak shape analysis being performed to give the reported ¹⁵N NMR resonances. The NMR data for pyridine and DMAP in CD₂Cl₂ have been previously reported.¹

The single crystal X-ray data for **1**, **1b**, **2c**, **2e**, **4a**, and **4b** were collected at 120 K using an Agilent SuperNova dual wavelength diffractometer with an Atlas detector using mirror-monochromated Cu-K α ($\lambda = 1.54184$ Å) radiation. The single crystal X-ray data for **(1c)**₂, **2b** and **3a**·(**py**)₄ were collected at 120 K using an Agilent SuperNova diffractometer with an Eos detector using mirror-monochromated Mo-K α ($\lambda = 0.71073$ Å) radiation. The program CrysAlisPro² was used for the data collection and reduction on the SuperNova diffractometers. All structures were solved by intrinsic phasing (SHELXT)³ and refined by full-matrix least squares on F^2 using Olex2,⁴ utilising the ShelXL-2015 module.⁵ Anisotropic displacement parameters were assigned to non-H atoms and isotropic displacement parameters for all H atoms were constrained to multiples of the equivalent displacement parameters of their parent atoms with U_{iso}(H) = 1.2 U_{eq} (aromatic; cyclic alkyl) or U_{iso}(H) = 1.5 U_{eq} (acyclic alkyl) of their respective parent atoms. The X-ray single crystal data and CCDC numbers of all new structures are included below.

The following abbreviations are used: 4-Mepy = 4-methylpyridine, 4-morpy = 4-morpholinopyridine, DCM = dichloromethane, DIPE = diisopropylether, DMAP = 4-dimethylaminopyridine, DMSO = dimethylsulfoxide, py = pyridine, TBME = ^tbutylmethylether.

Nomenclature Key

Ligand (L)	Ag(pivalate)(L)	(pivalyl-OI)(L)	Ag₃(trimesate)(L)₃	(trimesyl-OI)(L)₃
No ligand	1	(not observed)	3	(not observed)
Pyridine (a)	1a	2a	3a	4a
4-Mepy (b)	1b	2b	3b	4b
DMAP (c)	1c	2c		
4-morpy (d)	1d	2d		

Synthesis of Silver(I) Precursors

$$\begin{pmatrix} (H^{c}_{3}C^{c})_{3}-C^{b}-C^{a}_{a} \\ O-Ag \end{pmatrix}_{n}$$

Ag(pivalate) (1): Prepared in the absence of light. Pivalic acid (1.02 g, 10 mmol) was added to a H₂O (15 mL) solution of NaOH (0.40 g, 10.05 mmol), and after stirring the colourless solution for 15 minutes, a H₂O (20 mL) solution of AgNO₃ (1.71 g 10.05 mmol) was added dropwise to immediately give a precipitate. The resulting brown-ish suspension was stirred for 1 hour, then the precipitate was isolated by filtration. The solid was washed with H₂O (3 × 15 mL), MeOH (3 × 15 mL), and Et₂O (3 × 15 mL) to give an off-white solid that was dried under reduced pressure. Recovered yield = 1.90 g (91%). ¹H NMR (500 MHz, (CD₃)₂SO) δ 1.10 (s, 9H, H^c); ¹³C NMR (126 MHz, (CD₃)₂SO) δ 181.8 (C³), 28.8 (C^c) (C^b at ~39 ppm is obscured by the residual DMSO peak at 39.5 ppm). Crystals suitable for single crystal X-ray diffraction were obtained from a DCM/DMSO solution of **1** vapour diffused with DIPE. Crystal data for **1**: CCDC-2173463, (C₁₀H₉Ag₂O₄)_n, M = 417.98, colourless needle, 0.01 x 0.06 x 0.22 mm³, triclinic, space group *P*-1 (No. 2), a = 5.7752(4) Å, b = 13.483(1) Å, c = 16.9347(12) Å, α = 108.220(7)°, β = 90.240(5)°, γ = 94.770(6)°, V = 1247.57(16) Å³, Z = 4, D_{calc} = 2.225 gcm⁻³, F000 = 816, μ = 25.18 mm⁻¹, T = 120.0(1) K, θ_{max} = 76.6°, 4849 total reflections, 3314 with I_o > 2σ(I_o), R_{int} = 0.047, 4849 data, 301 parameters, no restraints, GooF = 0.98, 1.26 < dΔρ < -1.04 eÅ⁻³, *R*[*F*² > 2σ(*F*²]] = 0.037, *wR*(*F*²) = 0.086.

Figure S1: The X-ray crystal structure of polymer **1** (alkyl groups simplified for clarity). Colour key: light grey = silver, red = oxygen, dark grey = carbon, white = hydrogen.

Pivalic acid: ¹H NMR (500 MHz, CD₂Cl₂) δ 1.22 (s, 9H, H^c) (hydroxyl hydrogen atom not observed); ¹³C NMR (126 MHz, CD₂Cl₂) δ 184.8 (C^a), 38.8 (C^b), 27.1 (C^c).

¹H NMR (500 MHz, (CD₃)₂SO) δ 1.11 (s, 9H, H^c) (hydroxyl hydrogen atom not observed); ¹³C NMR (126 MHz, (CD₃)₂SO) δ 179.3 (C^a), 37.7 (C^b), 27.0 (C^c).

Ag₃(trimesate) (3): Prepared in the absence of light. Trimesic acid (1.00 g, 4.76 mmol) was added to a H₂O (20 mL) solution of NaOH (0.57 g, 14.28 mmol), and after stirring the colourless solution for 15 minutes, a H₂O (20 mL) solution of AgNO₃ (2.43 g 14.28 mmol) was added dropwise to immediately give a precipitate. The resulting off-white suspension was stirred for 1 hour, then the precipitate was isolated by filtration. The solid was washed with H₂O (3 × 15 mL), MeOH (3 × 15 mL), and hexane (3 × 15 mL) to give a white solid that was dried under reduced pressure. Recovered yield = 2.44 g (97%).

Synthesis of Silver(I) Compounds

Ag(pivalate)(py) (1a): Ag(pivalate) (**1**; 10.5 mg, 0.05 mmol) was dissolved in DMSO (4 mL), followed by addition of py (4.04 μL, 0.05 mmol) to give a pale beige solution. ¹H NMR (500 MHz, $(CD_3)_2SO$) δ 8.58 (s, 2H, H^d), 7.82 (s, 1H, H^f), 7.42 (s, 2H, H^e), 1.10 (s, 9H, H^c).

Pyridine: ¹H NMR (500 MHz, (CD₃)₂SO) δ 8.57 (d, *J* = 4.1 Hz, 2H, H^d), 7.78 (tt, *J* = 7.6, 1.6 Hz, 1H, H^f), 7.41 – 7.35 (m, 2H, H^e); ¹³C NMR (126 MHz, (CD₃)₂SO) δ 149.6 (C^d), 136.1 (C^f), 123.9 (C^e); ¹⁵N NMR (500 MHz, (CD₃)₂SO) δ -64.1.

Ag(pivalate)(4-Mepy) (1b): Ag(pivalate) (1; 10.5 mg, 0.05 mmol) was dissolved in DMSO (4 mL), followed by addition of 4-Mepy (4.87 μL, 0.05 mmol) to give a pale beige solution. ¹H NMR (500 MHz, (CD₃)₂SO) δ 8.43 (s.br, 2H, H^d), 7.27 (s.br, 2H, H^e), 2.33 (s, 3H, H^f), 1.10 (s, 9H, H^c). Crystals suitable for single crystal X-ray diffraction were obtained from a DCM solution (doped with several drops of DMSO to complete dissolution) of **1a** vapour diffused with pentane. Crystal data for **1a** (connectivity only): C₁₁H₁₆AgNO₂, M = 302.12, colourless plate, 0.01 x 0.10 x 0.13 mm³, triclinic, space group *P*-1 (No. 2), a = 5.688(2) Å, b = 8.659(3) Å, c = 13.226(6) Å, α = 76.65(4)°, β = 78.93(4)°, γ = 85.96(3)°, V = 621.8(5) Å³, Z = 2, D_{calc} = 1.614 gcm⁻³, F000 = 304, μ = 12.86 mm⁻¹, T = 120.0(1) K, θ_{max} = 71.9°, 2175 total reflections, 341 with I₀ > 2σ(I₀), R_{int} = 0.201, 2175 data, 53 parameters, 3 restraints, GooF = 1.02, 0.69 < dΔp < -1.29 eÅ⁻³, *R*[*F*² > 2σ(*F*²)] = 0.261, *wR*(*F*²) = 0.666.

Figure S2: The X-ray determined connectivity (isotropic) model of **1b** (alkyl and aryl groups simplified for clarity). Colour key: light grey = silver, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

4-Mepy: ¹H NMR (500 MHz, (CD₃)₂SO) δ 8.42 (d, *J* = 6.1 Hz, 2H, H^d), 7.18 (d, *J* = 5.3 Hz, 2H, H^e), 2.29 (s, 3H, H^g); ¹³C NMR (126 MHz, (CD₃)₂SO) δ 149.3 (C^d), 146.6 (C^f), 124.6 (C^e), 20.3 (C^g); ¹⁵N NMR (500 MHz, (CD₃)₂SO) δ -72.3.

Ag(pivalate)(DMAP) (1c): Ag(pivalate) (**1**; 10.5 mg, 0.05 mmol) was dissolved in DMSO (4 mL), followed by addition of DMAP (6.1 mg, 0.05 mmol) to give a pale beige solution. ¹H NMR (500 MHz, (CD₃)₂SO) δ 8.11 (d, *J* = 5.7 Hz, 2H, H^d), 6.68 (d, *J* = 5.7 Hz, 2H, H^e), 2.99 (s, 6H, H^g), 1.08 (s, 9H, H^c); ¹³C NMR (126 MHz, (CD₃)₂SO) δ 182.2 (C^a), 154.3 (C^f), 150.4 (C^d), 107.0 (C^e), 38.6 (C^b), 38.3 (C^g), 28.9 (C^c); ¹⁵N NMR (500 MHz, (CD₃)₂SO) δ -144.6 (pyridinic), -318.1 (NMe₂). Crystals suitable for single crystal X-ray diffraction were obtained by evaporation of an acetone solution (doped with several drops of DMSO to complete dissolution) of **1c**. Crystal data for **(1c)**₂: CCDC-2173464, C₂₄H₃₈Ag₂N₄O₄, M = 662.32, colourless block, 0.05 x 0.10 x 0.27 mm³, triclinic, space group *P*-1 (No. 2), a = 6.8349(11) Å, b = 9.4356(18) Å, c = 11.4549(19) Å, α = 82.991(14)°, β = 72.900(14)°, γ = 73.381(15)°, V = 676.0(2) Å³, Z = 1, D_{calc} = 1.627 gcm⁻³, F000 = 336, μ = 1.48 mm⁻¹, T = 120.0(1) K, θ_{max} = 26.4°, 2745 total reflections, 1914 with I₀ > 2σ(I₀), R_{int} = 0.065, 2745 data, 159 parameters, no restraints, GooF = 0.90, 1.65 < dΔρ < -1.61 eÅ⁻³, *R*[*F*² > 2σ(*F*²]] = 0.054, *wR*(*F*²) = 0.112.

Figure S3: The X-ray crystal structure of $(1c)_2$ (alkyl and aryl groups simplified for clarity). Colour key: light grey = silver, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

DMAP: ¹H NMR (500 MHz, (CD₃)₂SO) δ 8.09 (dd, *J* = 5.0, 1.5 Hz, 2H, H^d), 6.57 (dd, *J* = 5.0, 1.4 Hz, 2H, H^e), 2.94 (s, 6H, H^g); ¹³C NMR (126 MHz, (CD₃)₂SO) δ 153.9 (C^f), 149.3 (C^d), 106.7 (C^e), 38.6 (C^g); ¹⁵N NMR (500 MHz, (CD₃)₂SO) δ -105.3 (pyridinic), -325.0 (NMe₂).

Ag(pivalate)(4-morpy) (1d): Ag(pivalate) (1; 10.5 mg, 0.05 mmol) was dissolved in DMSO (4 mL), followed by addition of 4-morph (8.2 mg, 0.05 mmol) to give a pale beige solution. ¹H NMR (500 MHz, (CD₃)₂SO) δ 8.18 (d, J = 5.2 Hz, 2H, H^d), 6.90 (d, J = 5.2 Hz, 2H, H^e), 3.71 (unresolved t.br, 4H, H^h), 3.34 (unresolved t.br, 4H, H^g), 1.09 (s, 9H, H^c); ¹³C NMR (126 MHz, (CD₃)₂SO) δ 182.1 (C^a), 155.0 (C^f), 150.8 (C^d), 108.2 (C^e), 65.6 (C^h), 45.3 (C^g), 38.5 (C^b), 28.9 (C^c); ¹⁵N NMR (500 MHz, (CD₃)₂SO) δ -132.3 (pyridinic), -304.6 (morpholino).

4-morpy: ¹H NMR (500 MHz, (CD₃)₂SO) δ 8.18 (dd, *J* = 5.0, 1.5 Hz, 2H, H^d), 6.82 (dd, *J* = 5.0, 1.4 Hz, 2H, H^e), 3.71 (t, *J* = 4.9 Hz, 4H, H^h), 3.26 (t, *J* = 4.9 Hz, 4H, H^g); ¹³C NMR (126 MHz, (CD₃)₂SO) δ 154.8 (C^f), 149.8 (C^d), 108.2 (C^e), 65.7 (C^h), 45.6 (C^g); ¹⁵N NMR (500 MHz, (CD₃)₂SO) δ -94.7 (pyridinic), -306.5 (morpholino).

[Ag₃(trimesate)(py)₇]_n (3a·(py)₄): Crystals suitable for single crystal X-ray diffraction were obtained from a pyridine solution (doped with several drops of DMSO to complete dissolution) of **3** vapour diffused with TBME. Crystal data for **3a·(py)**₄: CCDC- 2173468, C₄₄H₃₈Ag₃N₇O₆, M = 1084.42, colourless plate, 0.01 x 0.09 x 0.13 mm³, monoclinic, space group $P2_1/c$, a = 20.8504(9) Å, b = 10.5290(3) Å, c = 19.2520(4) Å, β = 91.048(3)°, V = 4225.8(2) Å³, Z = 4, D_{calc} = 1.705 gcm⁻³, F000 = 2160, μ = 1.43 mm⁻¹, T = 120.0(1) K, θ_{max} = 27.3°, 8637 total reflections, 6802 with I_o > 2 σ (I_o), R_{int} = 0.085, 8637 data, 541 parameters, 36 restraints, GooF = 1.21, 2.16 < d $\Delta\rho$ < -0.84 eÅ⁻³, *R*[*F*² > 2 σ (*F*²)] = 0.079, *wR*(*F*²) = 0.132.

Figure S4: The X-ray crystal structure of **3a**·(**py**)₄ (alkyl and aryl groups simplified for clarity). Colour key: light grey = silver, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

Synthesis of O–I–N Compounds

All stabilised hypoiodite compounds were prepared using the same quantitative general methods, which are given below using (pivalyl-OI)(4-Mepy) (**2b**) and (trimesyl-OI)(py)₃ (**4a**) as examples.

(pivalyI-OI)(py) (2a): Synthesis the same as for **2b** with pyridine (4.0 μL, 0.05 mmol) instead of 4-Mepy. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.64 (d, *J* = 4.7 Hz, 2H, H^d), 7.94 (t, *J* = 7.5 Hz, 1H, H^f), 7.40 (dd, *J* = 7.2, 6.3 Hz, 2H, H^e), 1.13 (s, 9H, H^c).

(**pivalyI-OI**)(4-Mepy) (2b): Ag(pivalate) (1; 10.5 mg, 0.05 mmol) was suspended in DCM (4 mL) and 4-Mepy (4.87 μ L, 0.05 mmol) added to give a colloidal suspension. Stirred or 10 minutes, then I₂ (12.7 mg, 0.05 mmol) was added as a solid and left to stir for approximately 5 minutes (until all the I₂ had dissolved). The filtrate of the resulting pale red solution and yellow precipitate was isolated by filtration. The compound's high solubility in most organic solvents prevented isolation of the bulk sample by precipitation, and concentration under reduced pressure resulted in rapid decomposition of the compound (strong purple colour generated upon decomposition). ¹H NMR (500 MHz, CD₂Cl₂) δ 8.47 (d, *J* = 6.3 Hz, 2H, H^d), 7.20 (d, *J* = 5.6 Hz, 2H, H^e), 2.42 (s, 3H, H^g), 1.13 (s, 9H, H^c); ¹³C NMR (126 MHz, CD₂Cl₂) δ 183.1 (C³), 152.7 (C^d), 149.0 (C¹), 127.5 (C^e), 38.4 (C^b), 28.4 (C^c), 21.6 (C^g); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -154.4. Crystals suitable for single crystal X-ray diffraction were obtained from a toluene solution of **2b** vapour diffused with pentane. Crystal data for **2b**: CCDC-2173465, C₁₁H₁₆INO₂, M = 321.15, colourless plate, 0.03 x 0.14 x 0.21 mm³, triclinic, space group *P*-1 (No. 2), a = 5.6777(3) Å, b = 8.6359(5) Å, c = 13.1369(8) Å, α = 76.766(5)°, β = 78.689(5)°, γ = 86.009(4)°, V = 614.64(6) Å³, Z = 2, D_{calc} = 1.735 gcm⁻³, F000 = 316, μ = 2.59 mm⁻¹, T = 120.0(1) K, $\theta_{max} = 28.5^\circ$, 2509 total reflections, 2254 with I₀ > 2 σ (I₂), R_{int} = 0.035, 2509 data, 140 parameters, no restraints, GooF = 1.02, 0.88 < d\Delta\rho < -0.81 eÅ⁻³, *R*[*F*² > 2 σ (*F*²)] = 0.036, *w*(*F*²) = 0.066.

Figure S5: The X-ray crystal structure of **2b** (alkyl and aryl groups simplified for clarity). Colour key: purple = iodine, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

4-Mepy: ¹H NMR (500 MHz, CD₂Cl₂) δ 8.42 (d, *J* = 5.9 Hz, 2H, H^d), 7.10 (d, *J* = 5.3 Hz, 2H, H^e), 2.33 (s, 3H, H^g); ¹³C NMR (126 MHz, CD₂Cl₂) δ 149.9 (C^d), 147.4 (C^f), 124.9 (C^e), 21.1 (C^g); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -75.1.

(pivalyI-OI)(DMAP) (2c): Synthesis the same as for 2b with DMAP (6.1 mg, 0.05 mmol) instead of 4-Mepy. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.08 (d, *J* = 6.5 Hz, 2H, H^d), 6.41 (d, *J* = 6.4 Hz, 2H, H^e), 3.05 (s, 6H, H^g), 1.10 (s, 9H, H^c); ¹³C NMR (126 MHz, CD₂Cl₂) δ 183.3 (C^a), 155.5 (C^f), 148.6 (C^d), 108.3 (C^e), 39.7 (C^g), 38.5 (C^b), 28.6 (C^c); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -201.8 (pyridinic), -311.4 (NMe₂). Crystals suitable for single crystal X-ray diffraction were obtained from a DCM solution of **2c** vapour diffused with pentane. Crystal data for **2c**: CCDC-2173466, C₁₂H₁₉IN₂O₂, M = 350.19, colourless plate, 0.04 x 0.20 x 0.26 mm³, triclinic, space group *P*-1 (No. 2), a = 10.4936(5) Å, b = 14.6196(7) Å, c = 14.9627(7) Å, α = 95.341(4)°, β = 91.077(4)°, γ = 107.447(4)°, V = 2177.71(19) Å³, Z = 6, D_{calc} = 1.602 gcm⁻³, F000 = 1044, μ = 17.29 mm⁻¹, T = 120.0(1) K, θ_{max} = 76.6°, 8483 total reflections, 7561 with I_o > 2 σ (I_o), R_{int} = 0.043, 8483 data, 475 parameters, no restraints, GooF = 1.03, 0.94 < d $\Delta\rho$ < -0.95 eÅ⁻³, *R*[*F*² > 2 σ (*F*²)] = 0.036, *wR*(*F*²) = 0.097.

Figure S6: The X-ray crystal structure of **2c** (asymmetric unit cell; alkyl and aryl groups simplified for clarity). Colour key: purple = iodine, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

(pivalyl-OI)(4-morpy) (2d): Synthesis the same as for 2b with 4-morpy (8.2 g, 0.05 mmol) instead of 4-Mepy. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.15 (d, *J* = 6.8 Hz, 2H, H^d), 6.58 (d, *J* = 6.8 Hz, 2H, H^e), 3.79 (t, *J* = 5.0 Hz, 4H, H^h), 3.38 (t, *J* = 5.0 Hz, 4H, H^g), 1.10 (s, 9H, H^c); ¹³C NMR (126 MHz, CD₂Cl₂) δ 183.3 (C^a), 156.1 (C^f), 149.3 (C^d), 109.2 (C^e), 66.3 (C^h), 46.0 (C^g), 38.4 (C^b), 28.5 (C^c); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -193.3 (pyridinic), -298.7 (morpholino). Crystals suitable for single crystal X-ray diffraction were obtained from a DCM solution of 2d vapour diffused with DIPE. Crystal data for 2d: CCDC-2173467, C₁₄H₂₁IN₂O₃, M = 392.23, colourless block, 0.07 x 0.15 x 0.43 mm³, triclinic, space group *P*-1 (No. 2), a = 10.6593(3) Å, b = 12.9198(4) Å, c = 13.3925(5) Å, α = 83.712(3)°, β = 71.291(3)°, γ = 65.959(3)°, V = 1594.89(10) Å³, Z = 4, D_{calc} = 1.633 gcm⁻³, F000 = 784, μ = 15.86 mm⁻¹, T = 120.0(1) K, θ_{max} = 76.6°, 6221 total reflections, 5820 with I_o > 2σ(I_o), R_{int} = 0.027, 6221 data, 367 parameters, no restraints, GooF = 1.03, 1.20 < dΔρ < -1.42 eÅ⁻³, *R*[*F*² > 2σ(*F*²)] = 0.030, *wR*(*F*²) = 0.082.

Figure S7: The X-ray crystal structure of **2d** (asymmetric unit cell; alkyl and aryl groups simplified for clarity). Colour key: purple = iodine, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

4-morpy: ¹H NMR (500 MHz, CD₂Cl₂) δ 8.25 (dd, *J* = 5.0, 1.5 Hz, 2H, H^d), 6.67 (dd, *J* = 5.0, 1.5 Hz, 2H, H^e), 3.80 (t, *J* = 5.0 Hz, 4H, H^h), 3.25 (t, *J* = 5.0 Hz, 4H, H^g); ¹³C NMR (126 MHz, CD₂Cl₂) δ 155.6 (C^f), 150.6 (C^d), 108.5 (C^e), 66.7 (C^h), 46.6 (C^g); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -99.1 (pyridinic), -311.1 (morpholino).

(trimesyl-OI)(py)₃ (4a): Ag₃(trimesate) (3, 8.0 mg, 0.015 mmol) was suspended in DCM (4 mL), followed by addition of pyridine (3.63 µL, 0.045 mmol). Stirred for 10 minutes, then I₂ (11.4 mg, 0.045 mmol) was added as a solid and left to stir for approximately 5 minutes (until all the I₂ had dissolved). The filtrate of the resulting pale orange solution and yellow precipitate was isolated by filtration. The compound could be isolated in very low yields from the filtrate by precipitation with petroleum ether, however, the isolated white solid was observed to undergo partial decomposition within minutes of being precipitated out of solution. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.74 (d, *J* = 4.8 Hz, 6H), 8.55 (s, 3H), 8.01 (s, 3H), 7.51 – 7.40 (m, 6H); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -151.6. Crystals suitable for single crystal X-ray diffraction were obtained from a DCM solution of **4a** vapour diffused with pentane. Crystal data for **4a**: CCDC-2173469, C₂₄H₁₈I₃N₃O₆·H₂O, M = 843.13, colourless needle, 0.03 x 0.03 x 0.19 mm³, monoclinic, space group *P*2₁/*n*, a = 9.7621(2) Å, b = 24.2101(5) Å, c = 11.4785(2) Å, β = 91.437(2)°, V = 2711.99(9) Å³, Z = 4, D_{calc} = 2.065 gcm⁻³, F000 = 1600, µ = 27.57 mm⁻¹, T = 120.0(1) K, θ_{max} = 75.5°, 5294 total reflections, 4622 with I₀ > 2 σ (I₀), R_{int} = 0.030, 5294 data, 337 parameters, no restraints, GooF = 1.01, 0.49 < d\Deltap < -0.74 eÅ⁻³, *R*[*F*² > 2 σ (*F*²)] = 0.026, *wR*(*F*²) = 0.066.

Figure S8: The X-ray crystal structure of **4a**. Colour key: purple = iodine, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

(trimesyl-OI)(4-Mepy)₃ (4b): Synthesis the same as for 4a with 4-Mepy (4.4 μL, 0.045 mmol) instead of pyridine. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.55 (s.br, 6H), 8.53 (s, 3H), 7.24 (s.br, 6H), 2.44 (s, 9H). Crystals suitable for single crystal X-ray diffraction were obtained from a DCM solution of 4b vapour diffused with TBME. Crystal data for 4b: CCDC-2173470, C₂₇H₂₄I₃N₃O₆, M = 867.19, yellow block, 0.06 x 0.08 x 0.15 mm³, monoclinic, space group *P*2₁/*n*, a = 15.6502(4) Å, b = 9.9201(2) Å, c = 19.5464(5) Å, β = 109.522(3)°, V = 2860.16(13) Å³, Z = 4, D_{calc} = 2.014 gcm⁻³, F000 = 1656, μ = 26.14 mm⁻¹, T = 120.0(1) K, θ_{max} = 76.4°, 5592 total reflections, 4760 with I₀ > 2σ(I₀), R_{int} = 0.031, 5592 data, 355 parameters, no restraints, GooF = 1.05, 1.71 < dΔρ < -1.30 eÅ⁻³, *R*[*F*² > 2σ(*F*²)] = 0.035, *wR*(*F*²) = 0.100.

Figure S9: The X-ray crystal structure of **4b**. Colour key: purple = iodine, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

Comparison Tables of Chemical Shifts

Table S1: Comparison of the carboxylic ¹³C and pyridinic ¹⁵N NMR chemical shifts (in (CD₃)₂SO) of the silver(I) compounds **1-1b** and their precursors (in ppm).

Compound	Carboxylic carbon (δ_c)	Pyridinic nitrogen (δ _N)
1	181.8	-
Pivalic acid	179.3	-
1c	182.2	-144.6
DMAP	-	-105.3
1d	182.1	-132.3
4-morpy	-	-94.7

Table S2: Comparison of the carboxylic ¹³C and pyridinic ¹⁵N NMR chemical shifts (in CD₂Cl₂) of the iodine(I) compounds **2a-2d** and their precursors (in ppm).

Compound	Carboxylic carbon (δ _c)	Pyridinic nitrogen (δ_N)
Pivalic acid	184.8	-
2a	(unable to observe)*	(unable to observe)*
Pyridine	-	-67.7
2b	183.1	-154.4
4-Меру	-	-75.1
2c	183.3	-201.8
DMAP	-	-108.9
2d	183.3	-193.3
4-morpy	-	-99.1

*Compound **2a** was observed to decompose during NMR analysis with the initial peaks having completely diminished after approximately 30 minutes, which was an insufficient timeframe to accurately determine the ¹³C or ¹⁵N NMR chemical shifts.

NMR Spectra

Figure S10: The ¹H NMR spectrum of compound $\mathbf{1}$ in (CD₃)₂SO.

Figure S11: The 13 C NMR spectrum of compound **1** in (CD₃)₂SO.

Figure S12: The ¹H NMR spectrum of compound **1a** in $(CD_3)_2SO$.

Figure S13: The ¹H NMR spectrum of compound **1b** in (CD₃)₂SO.

Figure S14: The ¹H NMR spectrum of compound 1c in (CD₃)₂SO.

Figure S15: The 13 C NMR spectrum of compound **1c** in (CD₃)₂SO.

Figure S16: The ${}^{1}H{}^{-15}N$ HMBC spectrum of compound **1c** in (CD₃)₂SO.

Figure S17: The ¹H NMR spectrum of compound **1d** in $(CD_3)_2SO$.

Figure S18: The 13 C NMR spectrum of compound **1d** in (CD₃)₂SO.

Figure S19: The 1 H- 15 N HMBC spectrum of compound **1d** in (CD₃)₂SO.

Figure S20: The ¹H NMR spectrum of compound **2a** in CD₂Cl₂.

Figure S21: The ¹H NMR spectrum of compound **2b** in CD₂Cl₂.

Figure S22: The ¹³C NMR spectrum of compound **2b** in CD₂Cl₂.

Figure S23: The ¹H-¹⁵N HMBC spectrum of compound **2b** in CD₂Cl₂.

Figure S24: The ¹H NMR spectrum of compound **2c** in CD₂Cl₂.

Figure S25: The ¹³C NMR spectrum of compound **2c** in CD₂Cl₂.

Figure S26: The ¹H-¹⁵N HMBC spectrum of compound **2c** in CD₂Cl₂.

Figure S27: The ¹H NMR spectrum of compound **2d** in CD₂Cl₂.

Figure S28: The ¹³C NMR spectrum of compound **2d** in CD₂Cl₂.

Figure S29: The ¹H-¹⁵N HMBC spectrum of compound **2d** in CD₂Cl₂.

Figure S30: The ¹H NMR spectrum of compound **4a** in CD₂Cl₂.

Figure S31: The ¹H NMR spectrum of compound **4b** in CD₂Cl₂.

Figure S32: The ¹H NMR spectrum of pivalic acid in (CD₃)₂SO.

Figure S33: The 13 C NMR spectrum of pivalic acid in (CD₃)₂SO.

Figure S34: The ¹H NMR spectrum of pivalic acid in CD₂Cl₂.

Figure S35: The ¹³C NMR spectrum of pivalic acid in CD₂Cl₂.

Figure S36: The ¹H NMR spectrum of pyridine in (CD₃)₂SO.

Figure S37: The 13 C NMR spectrum of pyridine in (CD₃)₂SO.

Figure S38: The ¹H-¹⁵N HMBC spectrum of pyridine in (CD₃)₂SO.

Figure S39: The ¹H NMR spectrum of 4-Mepy in $(CD_3)_2SO$.

Figure S40: The 13 C NMR spectrum of 4-Mepy in (CD₃)₂SO.

Figure S41: The ¹H-¹⁵N HMBC spectrum of 4-Mepy in (CD₃)₂SO.

Figure S42: The ¹H NMR spectrum of 4-Mepy in CD₂Cl₂.

Figure S43: The ¹³C NMR spectrum of 4-Mepy in CD₂Cl₂.

Figure S44: The ¹H-¹⁵N HMBC spectrum of 4-Mepy in CD₂Cl₂.

Figure S45: The ¹H NMR spectrum of DMAP in (CD₃)₂SO.

Figure S46: The ¹³C NMR spectrum of DMAP in (CD₃)₂SO.

Figure S47: The ¹H-¹⁵N HMBC spectrum of DMAP in (CD₃)₂SO.

Figure S48: The ¹H NMR spectrum of 4-morpy in (CD₃)₂SO.

Figure S49: The ¹³C NMR spectrum of 4-morpy in (CD₃)₂SO.

Figure S50: The 1 H- 15 N HMBC spectrum of 4-morpy in (CD₃)₂SO.

Figure S51: The ¹H NMR spectrum of 4-morpy in CD₂Cl₂.

Figure S52: The ¹³C NMR spectrum of 4-morpy in CD₂Cl₂.

Figure S53: The ¹H-¹⁵N HMBC spectrum of 4-morpy in CD₂Cl₂.

Figure S54: The superimposed ¹H-¹⁵N HMBC spectra of the pyridinic nitrogen atoms of 4-Mepy, **2b**, 4-morpy, and **2d**, showing the large differences induced upon coordination to the iodine(I) atom.

Computational Details

General Considerations

The geometry calculations for the complexes were done at the M06-2X/def2-TZVP level of theory⁶ using the SPARTAN18 program⁷ with dichloromethane (dielectric = 8.82) as the solvent using the conductor like polarizable continuum model (C-PCM).^{8,9} The initial models were built using SPARTAN18 and optimised at the MM-level before the DFT calculations. The hypoiodite complexes **2a**, **2b**, **2c**, and **2d** were built up from the corresponding MM-level optimised carboxyl hypoiodites and their respective pyridine derivatives so that the N…O distance was ca. 4.7 Å and the O–I…N angle ca. 170 - 175°, and then optimised with the given DFT method.

DFT/XRD Comparison Table

Compound	2a	2b	2c*	2d [†]
0–I (Å)	-	2.166(3)	2.175(3)	2.155(3)
(XRD)			2.167(3)	2.170(3)
			2.169(4)	
0–I (Å)	2.120	2.126	2.157	2.145
(DFT)				
I–N (Å)	-	2.282(4)	2.254(3)	2.292(3)
(XRD)			2.270(4)	2.271(4)
			2.268(4)	
I–N (Å)	2.318	2.308	2.268	2.282
(DFT)				
C=O (Å)	-	1.225(4)	1.206(6)	1.219(3)
(XRD)			1.204(4)	1.224(3)
			1.228(7)	
C=O (Å)	1.218	1.217	1.220	1.220
(DFT)				
C–O (Å)	-	1.318(5)	1.281(7)	1.304(4)
(XRD)			1.314(5)	1.305(4)
			1.297(5)	
C–O (Å)	1.309	1.308	1.303	1.305
(DFT)				
0–I–N (°)	-	174.7(1)	173.3(1)	174.13(9)
(XRD)			172.7(1)	174.2(1)
			175.8(1)	
0–I–N (°)	176.4	176.2	176.4	176.5
(DFT)				

Table S3: Comparison of Experimental (XRD) Versus Computational (DFT) Bond Lengths and Angles.

* Three crystallographically independent molecules were observed in the asymmetric unit cell of 2c.

⁺ Two crystallographically independent molecules were observed in the asymmetric unit cell of **2d**.

Computational Structures

Figure S55: The computationally generated geometry of **2a**.

Figure S56: The computationally generated geometry of **2b**.

Figure S57: The computationally generated geometry of 2c.

Figure S58: The computationally generated geometry of **2d**.

Cartesian Coordinates

2a

I	-0.266370	-0.000000	-1.036942
С	-0.072944	0.00000	3.352836
С	1.157152	-0.000000	4.253682
Н	1.771743	0.883173	4.076850
Н	1.771743	-0.883174	4.076850
Н	0.840140	-0.000001	5.298249
С	-0.914280	-1.253680	3.615841
Н	-0.340457	-2.159629	3.407273
Н	-1.812057	-1.259952	2.997466
Н	-1.214100	-1.273589	4.666093
С	-0.914280	1.253680	3.615841
Н	-0.340456	2.159629	3.407274
Н	-1.214099	1.273588	4.666094
Н	-1.812056	1.259953	2.997466
С	0.361410	0.00000	1.881831
0	1.529792	0.00001	1.538922
0	-0.647694	-0.000000	1.048088
N	0.005961	-0.000000	-3.339230
С	0.332762	-0.000000	-6.069143
С	-1.062895	-0.000000	-4.138011
С	1.232925	0.00000	-3.863030
С	1.437530	0.00000	-5.230308
С	-0.938674	-0.000000	-5.514868
Н	-2.029863	-0.000001	-3.650417
Н	2.057173	0.00000	-3.160478
Н	2.445167	0.00000	-5.621395
Н	-1.825057	-0.000001	-6.133039
Н	0.461786	-0.000000	-7.143795

2b

I	-0.312342	0.00000	-0.248846
С	-0.013882	0.00000	4.142186
С	1.236334	0.00000	5.014325
Н	1.846723	0.883163	4.823630
Н	1.846723	-0.883163	4.823630
Н	0.943404	0.00000	6.065908
С	-0.849114	-1.253521	4.424269
Н	-0.280643	-2.159434	4.203313
Н	-1.759381	-1.259286	3.825561
Н	-1.125879	-1.273368	5.480249
С	-0.849114	1.253521	4.424269
Н	-0.280643	2.159434	4.203313
Н	-1.125879	1.273368	5.480249
Н	-1.759381	1.259286	3.825561
С	0.385657	0.00000	2.661006
0	1.546432	0.00000	2.291899
0	-0.640929	0.00000	1.851354
Ν	-0.107315	0.00000	-2.547730
С	0.137588	0.00000	-5.312456
С	-1.198188	0.00000	-3.320212
С	1.099061	0.00000	-3.114924
С	1.257960	0.00000	-4.487930
С	-1.113349	0.00000	-4.696253
Н	-2.152050	0.00000	-2.807643
Н	1.948959	0.00000	-2.443584
Н	2.255171	0.00000	-4.907535
Н	-2.020905	0.00000	-5.285723
С	0.257886	0.00000	-6.805544
Н	1.300162	0.00000	-7.117969
Н	-0.236533	0.879270	-7.222187
Н	-0.236533	-0.879270	-7.222187

2c

I	-0.353775	-0.091335	0.798086
С	0.057388	-0.183037	5.209892
С	1.312492	0.011144	6.053070
Н	1.768183	0.983027	5.860201
Н	2.053488	-0.759468	5.839003
Н	1.049548	-0.044325	7.111397
С	-0.547978	-1.563797	5.485560
Н	0.157581	-2.357880	5.231531
Н	-1.460946	-1.711900	4.909014
Н	-0.788800	-1.648436	6.547352
С	-0.967234	0.906337	5.540802
Н	-0.565576	1.898664	5.324441
Н	-1.212838	0.862573	6.603912
Н	-1.882573	0.768977	4.966034
С	0.409973	-0.099488	3.717773
0	1.557135	0.036885	3.323634
0	-0.627250	-0.195222	2.935343
Ν	-0.208873	0.004795	-1.462640
С	-0.015032	0.152558	-4.256193
С	-1.301029	-0.093807	-2.233002
С	0.978553	0.174321	-2.060946
С	1.124339	0.251685	-3.420780
С	-1.257405	-0.029033	-3.601113
Н	-2.242068	-0.230477	-1.714449
Н	1.838088	0.248938	-1.406230
Н	2.114038	0.387376	-3.827919
Н	-2.180412	-0.116038	-4.153233
Ν	0.078289	0.226337	-5.593847
С	1.373580	0.427135	-6.223423
Н	2.055210	-0.394516	-5.992294
Н	1.829051	1.362030	-5.890222
Н	1.237597	0.472086	-7.299160
С	-1.115646	0.108685	-6.415297
Н	-0.831681	0.182074	-7.460229
Н	-1.827482	0.906212	-6.190634
Н	-1.607934	-0.853080	-6.255434

2d

I	-0.429000	-0.249000	1.810000
С	-0.140000	-0.312000	6.219000
С	0.962000	0.249000	7.112000
Н	1.062000	1.327000	6.982000
Н	1.924000	-0.212000	6.883000
Н	0.720000	0.045000	8.157000
С	-0.254000	-1.827000	6.419000
Н	0.681000	-2.327000	6.157000
Н	-1.054000	-2.242000	5.807000
Н	-0.472000	-2.038000	7.468000
С	-1.476000	0.356000	6.557000
Н	-1.425000	1.436000	6.397000
Н	-1.715000	0.178000	7.608000
Н	-2.281000	-0.049000	5.944000
С	0.187000	-0.031000	4.746000
0	1.183000	0.582000	4.400000
0	-0.704000	-0.508000	3.921000
N	-0.249000	-0.054000	-0.456000
С	0.027000	0.155000	-3.248000
С	-0.995000	-0.800000	-1.280000
С	0.641000	0.784000	-1.000000
С	0.813000	0.916000	-2.354000
С	-0.891000	-0.738000	-2.646000
Н	-1.701000	-1.474000	-0.812000
Н	1.242000	1.362000	-0.308000
Н	1.571000	1.601000	-2.697000
Н	-1.534000	-1.379000	-3.225000
N	0.136000	0.281000	-4.599000
С	1.221000	1.078000	-5.169000
Н	2.160000	0.513000	-5.132000
Н	1.345000	1.996000	-4.600000
С	-0.325000	-0.794000	-5.478000
Н	-1.266000	-1.199000	-5.119000
Н	0.419000	-1.599000	-5.490000
С	0.908000	1.476000	-6.599000
Н	1.777000	1.962000	-7.038000
Н	0.063000	2.175000	-6.609000
С	-0.552000	-0.286000	-6.888000
Н	-1.396000	0.415000	-6.898000
Н	-0.780000	-1.125000	-7.543000
0	0.599000	0.354000	-7.399000

References

- J. S. Ward, G. Fiorini, A. Frontera and K. Rissanen, *Chem. Commun.*, 2020, **56**, 8428–8431.
- 2 Agilent Technologies Ltd, 2014, CrysAlisPro.
- G. M. Sheldrick, *Acta Crystallogr. Sect. A Found. Adv.*, 2015, **71**, 3–8.
- 4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 5 G. M. Sheldrick, *Acta Crystallogr. Sect. C, Struct. Chem.*, 2015, **71**, 3–8.
- 6 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 7 Spartan'18, Wavefunction Inc., Irvine CA, USA 2018.
- 8 X. Zhang and J. M. Herbert, J. Phys. Chem. B, 2014, **118**, 7806–7817.
- 9 A. W. Lange and J. M. Herbert, *Chem. Phys. Lett.*, 2011, **509**, 77–87.