Supplementary Information

A processable Prussian blue analogue-mediated route to promote alkaline electrocatalytic water splitting over bifunctional copper phosphide

Jiahui Chen,^{a,b} Yunming Li,^{*c} Huangqing Ye,^d Pengli Zhu,^e Xian-Zhu Fu,^{*a} and Rong Sun^e

^a College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China

^b College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

^c School of New Energy Science and Engineering, Xinyu University, Xinyu 338004, China

^d SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Institute

of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.

^e Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

* Corresponding authors:

E-mail: 395591748@qq.com (Y. Li)

E-mail: xz.fu@szu.edu.cn (X. -Z. Fu)

Fig. S1 SEM images of the copper foam in different magnifications.

Fig. S2 (a-c) SEM images of CH/CF in different magnifications and (d) XRD pattern of CH/CF.

Samples	H ₂ O	0.1 M HCl	$K_3[Co(CN)_6]$	Reaction times
CH@PBA/CF-1	40 mL	1 mL	100 mg	4 h
CH@PBA/CF-2	40 mL	0.5 mL	100 mg	4 h
CH@PBA/CF-3	40 mL	1.5 mL	100 mg	4 h
CH@PBA/CF-4	40 mL	1 mL	100 mg	2 h
CH@PBA/CF-5	40 mL	1 mL	100 mg	6 h

Table S1 Optimization of the synthetic parameters of CH@PBA/CF.

Fig. S3 SEM images of samples obtained by using different synthetic parameters in Table S1: (a) CH@PBA/CF-2, (b) CH@PBA/CF-3, (c) CH@PBA/CF-4 and (d) CH@PBA/CF-5.

Fig. S4 (a-c) SEM images of CH-P/CF in different magnifications and (d) XRD pattern of CH-P/CF.

Fig. S5 (a-c) SEM images of PBA/CF in different magnifications and (d) XRD pattern of PBA powder scrapped from the copper foam.

Fig. S6 (a-c) SEM images in different magnifications, (d) XRD pattern and (e) SEM EDS spectrum of PBA-P/CF.

Fig. S7 The LSV curves normalized to (a) mass loading and (b) ECSA.

Fig. S8 Cyclic voltammetry curves of the electrocatalysts in the region of -0.8~-0.9 V vs. Ag/AgCl at various scan rates: (a) CH@PBA-P/CF, (b) PBA-P/CF, (c) CH-P/CF and (d) Pt/CF.

Fig. S9 The LSV curves before and after 1000 CV cycles in 1 M KOH.

Fig. S10 The LSV curves normalized to (a) mass loading and (b) ECSA.

Fig. S11 Cyclic voltammetry curves of the electrocatalysts in the region of 0.05~0.15 V vs. Ag/AgCl at various scan rates: (a) CH@PBA-P/CF, (b) PBA-P/CF, (c) CH-P/CF and (d) RuO₂/CF.

Fig. S12 The LSV curves before and after 1000 CV cycles in 1 M KOH.

Fig. S13 XRD patterns of CH@PBA-P/CF after chronoamperometry measurements for overall water splitting.

Catalysts	Substrate*	HER (mV)		OER (mV)		Deferences
		η_{50}	η_{100}	η_{50}	η_{100}	Kelerences
CH@PBA-P/CF	CF	231	274	312	341	This work
CuNiS	NF	151	225	398	426	1
CoMoS	NF	213	238	350	395	2
Mn/Ni-doped Cu ₂ S	Monolith	136	160	317	330	3
CuNi@NiFeCu	СР	185	~200	285	297	4
Cu ₃ P/Ni ₂ P	CF	~180	~220	330	400	5
Co-Cu-P	NF	153	182	343	365	6
CuNiFeCrCo	NF	~170	180	~295	315	7
Cu ₂ S/Co(OH) ₂	CF	241	/	268	/	8
Cu ₂ S@CoS	CF	235	/	275	/	9
Cu-Co-P	Cu foil	288	/	425	/	10
Cu ₃ P@NiFeMOF	CF	350	/	345	/	11
NiCu/NiCuN@NC	NF	/	149	/	295	12
Cu ₃ N/CuO	NF	/	280	/	425	13
CuNiS	СР	/	~300	/	~410	14
CoNiS@CuO	CF	/	~175	/	314	15
NiCu	Cu foil	/	167	/	~390	16

 Table S2 Comparison of the catalytic activity of CH@PBA-P/CF with other reported copperbased electrocatalysts.

Note: * CF = copper foam, NF = nickel foam, CP = carbon paper.

Reference

- 1 D. Chinnadurai, R. Rajendiran and P. Kandasamy, J. Colloid Interface Sci., 2022, 606, 101-112.
- A. Sajeev, V. K. Mariappan, D. Kesavan, K. Krishnamoorthy and S.-J. Kim, *Mater. Adv.*, 2021, **2**, 455-463.
- 3 H. Yuan, S. Zheng, S. Sang, J. Yang, J. Sun, Z. Ma and X. Wang, *Int. J. Hydrogen Energy*, 2022, **47**, 11827-11840.

- 4 D. Cao, H. Xu and D. Cheng, *Appl. Catal. B: Environ.*, 2021, **298**, 120600.
- 5 H. Liu, J. Gao, X. Xu, Q. Jia, L. Yang, S. Wang and D. Cao, *Chem. Eng. J.*, 2022, **448**, 137706.
- 6 Y. Liu, Y. Yang, B. Chen, X. Li, M. Guo, Y. Yang, K. Xu and C. Yuan, *Inorg. Chem.*, 2021, 60, 18325-18336.
- 7 B. Nourmohammadi Khiarak, M. Mojaddami, Z. Zamani Faradonbeh, A. O. Zekiy and A. Simchi, *Energy Fuels*, 2022, **36**, 4502-4509.
- 8 D. Wang, J. Li, Y. Zhao, H. Xu and J. Zhao, *Electrochim. Acta*, 2019, **316**, 8-18.
- 9 Q. Zhou, T.-T. Li, J. Wang, F. Guo and Y.-Q. Zheng, *Electrochim. Acta*, 2019, 296, 1035-1041.
- 10 R. N. Wasalathanthri, S. Jeffrey, R. A. Awni, K. Sun and D. M. Giolando, *ACS Sustainable Chem. Eng.*, 2019, **7**, 3092-3100.
- E. Li, Q. Mou, Z. Xu, J. Ma, X. Liu, G. Cheng, P. Zhao and H. Li, *Catal. Lett.*, 2022, DOI: 10.1007/s10562-021-03865-5.
- 12 J. Hou, Y. Sun, Z. Li, B. Zhang, S. Cao, Y. Wu, Z. Gao and L. Sun, *Adv. Funct. Mater.*, 2018, 28, 1803278.
- C. Panda, P. W. Menezes, M. Zheng, S. Orthmann and M. Driess, *ACS Energy Lett.*, 2019, 4, 747-754.
- 14 D. Cao and D. Cheng, Chem. Commun., 2019, 55, 8154-8157.
- 15 J. Yang, H. Xuan, G. Zhang, R. Wang, J. Yang, X. Liang, Y. Li and P. Han, *Appl. Surf. Sci.*, 2021, **570**, 151181.
- J. Niu, Y. Yue, C. Yang, Y. Wang, J. Qin, X. Zhang and Z.-S. Wu, *Appl. Surf. Sci.*, 2021, 561, 150030.