Synthesis, Structural Studies, and Photophysical Properties of Heteroleptic Inverse-Coordination Clusters

Guan-Rong Huang,^a Rhone P. Brocha Silalahi,^a Jian-Hong Liao,^a Tzu-Hao Chiu,^a and C. W. Liu^a*

^a Department of Chemistry, National Dong Hwa University No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, Taiwan 974301 (R.O.C.) E-mail:chenwei@gms.ndhu.edu.tw

Figure S1. ESI-MS spectra of the cluster $[1a-PF_6]^+$ in positive mode. Inset: Experimental in the top (black) and theoretical one in the bottom (red) of $[1a-PF_6]^+$.

Figure S2. ESI-MS spectra of the cluster $[1b-PF_6]^+$ in positive mode. Inset: Experimental in the top (black) and theoretical one in the bottom (red) of $[1b-PF_6]^+$.

Figure S5. ¹H NMR spectrum of cluster 1c in d_6 -acetone.

NMR of phenyl rings. The (*, *, and *) highlighted are the ¹³C NMR of the ^{*i*}Pr alkyl group in the dithiophosphate ligand.

Figure S7. ¹³C NMR spectrum of cluster 1b in a_6 -acetone. Inset; the expanded spectra for ¹³C NMR of phenyl rings. The (*, *, and *) highlighted are the ¹³C NMR of the ^{*i*}Pr alkyl group in the dithiophosphate ligand.

Figure S8. ¹³C NMR spectrum of cluster **1c** in d_6 -acetone. Inset; the expanded spectra for ¹³C NMR of phenyl rings. The (*, *, and *) highlighted are the ¹³C NMR of the ^{*i*}Pr alkyl group in the dithiophosphate ligand.

Figure S9. ³¹P{¹H} NMR spectrum of cluster 1a in d_6 -acetone.

Figure S10. ³¹P{¹H} NMR spectrum of cluster **1b** in d_6 -acetone.

Figure S11. ³¹P{¹H} NMR spectrum of cluster 1c in d_6 -acetone.

Figure S13. Time-dependent ${}^{31}P{}^{1}H$ NMR spectrum of cluster 1a in d_6 -acetone.

Figure S14. FT-IR spectrum of cluster 1a.

Figure S15. FT-IR spectrum of cluster 1b.

Figure S16. FT-IR spectrum of cluster 1c.

Figure S17. ESI-MS spectra of the cluster $[2a-PF_6]^+$ in positive mode. Inset: Experimental in the top (black) and theoretical one in the bottom (red) of $[2a-PF_6]^+$.

Figure S18. ESI-MS spectra of the cluster $[2b-PF_6]^+$ in positive mode. Inset: Experimental in the top (black) and theoretical one in the bottom (red) of $[2b-PF_6]^+$.

dithiophosphate ligand.

dithiophosphate ligand.

NMR of phenyl rings. The (*, *, and *) highlighted are the ¹³C NMR of the ^{*i*}Pr alkyl group in the dithiophosphate ligand.

Figure S25. ³¹P{¹H} NMR spectrum of cluster **2a** in d_6 -acetone.

Figure S26. ³¹P{¹H} NMR spectrum of cluster **2b** in d_6 -acetone.

Figure S27. ³¹P{¹H} NMR spectrum of cluster **2c** in d_6 -acetone.

Figure S28. FT-IR spectrum of cluster 2a.

Figure S29. FT-IR spectrum of cluster 2b.

Figure S30. FT-IR spectrum of cluster 2c.

Figure 31. The excitation spectra of cluster 1a-c and 2a-c in 2-MeTHF at 77 K.

	1a	1b	1c	2a	2b	2c
CCDC number	2169261	2169262	2169263	2169264	2169265	2169266
Empirical formula	$\begin{array}{c} C_{68}H_{104}ClCu_{12}\\ F_6O_{12}P_7S_{12} \end{array}$	$\begin{array}{c} C_{68}H_{104}BrCu_{12}\\ F_6O_{12}P_7S_{12} \end{array}$	$\begin{array}{c} C_{68}H_{104}Cu_{12}F_{6}\\ O_{13}P_{7}S_{12}\cdot(CH_{3}\\)_{2}CO \end{array}$	$\begin{array}{c} C_{68}H_{104}Ag_{12}Cl\\ F_6O_{12}P_7S_{12} \end{array}$	$\begin{array}{c} C_{68}H_{104}Ag_{12}Br \\ F_6O_{12}P_7S_{12} \end{array}$	$\begin{array}{c} C_{68}H_{104}Ag_{12}F_{6}\\ IO_{12}P_{7}S_{12} \end{array}$
Formula weight	2626.95	2671.41	2776.46	3268.99	3203.37	3250.36
Temperature, K	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
Wavelength, Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	$P2_{1}/n$	$P2_{1}/n$	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a, Å	18.626(2)	18.6194(15)	16.7070(19)	21.3242(6)	21.4279(7)	21.4823(3)
b, Å	23.462(3)	23.4762(18)	17.367(2)	22.8389(6)	22.7192(8)	22.6593(9)
c, Å	22.637(3)	22.7144(18)	19.993(2)	23.6053(6)	23.7146(7)	23.8050(9)
α, deg.	90	90	66.877(2)	79.8300(6)	99.8543(7)	99.8379(8)
β, deg.	90.394(3)	90.280(2)	83.253(2)	89.9697(6)	90.3872(7)	90.4695(9)
γ, deg.	90	90	71.002(2)	63.8667(6)	116.2836(7)	116.3596(8)
Volume, Å ³	9892.1(19)	9928.6(14)	5044.1(10)	10120.0(5)	10153.9(6)	10183.7(7)
Ζ	4	4	2	4	4	4
Calculated density, Mg m ⁻³	1.764	1.787	1.828	2.080	2.095	2.120
Absorption coefficient, mm ⁻	2.978	3.342	3.202	2.712	3.070	2.971
Crystal size, mm ³	0.30x0.17x0.1 0	0.10x0.07x0.0 5	0.20x0.12x0.0 4	0.25x0.24x0.0 7	0.25x0.16x0.0 5	0.25x0.13x0.1 0
θ_{max} , deg.	27.143	25.000	24.999	27.154	24.999	25.000
Reflections collected / unique	$\frac{123710/21882}{[R_{int}=0.0372]}$	58959/17453 [<i>R</i> _{int} =0.0367]	32764/17534 [R_{int} = 0.0242]	80345/43760 [R_{int} = 0.0171]	60899/35292 [R_{int} = 0.0196]	75557/35369 [R_{int} = 0.0208]
Completeness, %	100	99.9	98.6	98.6	98.7	98.6
restraints / parameters	469/1079	523/1111	134/1171	922/2212	1053/2237	929/2219
GOF	1.038	1.015	1.026	1.022	1.017	1.047
	R1 = 0.0302, wR2 = 0.0704 R1 = 0.0366, wR2 = 0.0740	R1=0.0310,wR2=0.0680 $R1=0.0460,wR2=0.0750$	R1=0.0612, wR2= 0.1743 R1=0.0784, wR2= 0.1933	R1=0.0325,wR2=0.0762 $R1=0.0404,wR2=0.0816$	R1=0.0350,wR2=0.0931 $R2=0.0438,wR2=0.1002$	R1=0.0415,wR2=0.1023 $R1=0.0496,wR2=0.1103$
Largest diff. peak / hole, e Å ⁻	1.228/-1.460	1.043/-0.796	2.710/-0.872	2.131/-1.783	1.924/-1.529	2.389/-2.226

 Table S1. Selected X-ray crystallographic data of 1a-c and 2a-c.

^a $R1 = \Sigma \mid |F_o| - |F_c| \mid /\Sigma \mid F_o|$. ^b $wR2 = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]\}^{1/2}$