Supporting Information

Water-soluble Dinuclear Iridium(III) and Ruthenium(II) Bis-terdentate Complexes: Photophysics and Electrochemiluminescence

Bingqing Liu,^a Xin Yang,^b Mahammed Jabed,^a Svetlana Kilina,^a Zhengchun Yang,^{*,b} Wenfang Sun^{*,a}

^a Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA

^b School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China

Figure S1. ¹H NMR spectrum of complex 1 in D₂O (400 MHz).

Figure S2. ¹H NMR spectrum of 2 in D_2O (400 MHz).

Figure S3. ¹H NMR spectrum of 3 in D_2O (500 MHz).

Figure S4. ¹H NMR spectrum of 4 in DMSO- d_6 (400 MHz).

Fig. S5. (a) Experimental and (b) calculated absorption spectra of 1-4 in water. The two Ir(III) complexes 1 and 2 were calculated using PBE0 and the two Ru(II) complexes 3 and 4 were calculated using the B3LYP functional.

Fig. S6. Comparison of the normalized experimental and calculated absorption spectra for complexes 1-4 in water. 1 and 2 were calculated using the PBE0 functional and complexes 3 and 4 were calculated using the B3LYP functional.

S _n and Properties	Hole	Electron
S_9 352 nm f = 0.759		
S_{11} 349 nm f = 0.156		
S_{14} 342 nm f = 0.022		
S_{15} 342 nm f = 0.027		
S_{16} 341 nm f = 0.035		
S_{41} 313 nm f = 0.023		
S_{49} 309 nm f = 0.942	**************************************	

Table S1. Natural transition orbitals of the high-energy transitions for complex **1**. The TDDFT calculations were conducted using PBE0 functional, LAN2dz/6-31G* basis set, and water as solvent.

Table S2. Natural transition orbitals of the high-energy transitions for complex **2**. The TDDFT calculations were conducted using PBE0 functional, LAN2dz/6-31G* basis set, and water as solvent.

Table S3. Natural transition orbitals of the high-energy transitions for complex **3**. The TDDFT calculations were conducted using B3LYP functional, LAN2dz/6-31G* basis set, and water as solvent.

 Hole
 Electron

 S_{39} 380 nm

 f = 0.488 Image: S_{53}

 S_{53} Image: S_{129}

 292 nm Image: S_{129}

 f = 0.849 Image: S_{129}

Table S4. Natural transition orbitals of the high-energy transitions for complex **4**. The TDDFT calculations were conducted using B3LYP functional, LAN2dz/6-31G* basis set, and water as solvent.

Fig. S7. Experimental emission spectra and calculated emission energies for complexes **1-3** in water. Emission energies are calculated by optimizing the triplet state (T_1) using analytical TDDFT method, the PBE0 functional, LAN2DZ/6-31G* basis sets and CPCM solvation method with water being used as a solvent. Bar heights are chosen randomly for a better representation.

Fig. S8. Time-resolved ns-TA spectra of complexes 1-4 in acetonitrile at room temperature after 355 nm laser excitation. $A_{355} = 0.4$ in a 1 cm cuvette.