Supporting Information

Highly Efficient Broadband White-light Emission in Two-dimensional Semi-conductive Hybrid Lead–Chlorine Halide

Yuyin Wang,^a Chen Sun,^a Bin Su,^b Xianfeng Li,^c Xiangxi Meng,^a Huiru Lou,^a Ziwen Cheng,^a Ying Wang^a and Guoming Lin*^d

- ^{a.} School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
- ^{b.} School of Materials Science and Engineering in Tsinghua University, Tsinghua University, Beijing, 100000, P. R. China.
- ^{c.} Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
- ^{d.} Department of physics, National University of Singapore, Singapore 117551. lingmdbs@nus.edu.sg.

Scheme S1. The possible generation route of DTHPE molecule in the preparation process of $[DTHPE]Pb_4Cl_{10}$.

Fig. S1. The simulated and experimental XRD patterns of $[DTHPE]Pb_4Cl_{10}$. *stands for the peaks which related with tetranuclear structure of $[Pb_3Cl_{20}]$ clusters.

Fig. S2. (a) The solid state UV-Vis optical absorption spectrum of [DTHPE]Pb₄Cl₁₀;
(b) The Tauc's plots based on the assumptions of direct and indirect transitions.

Fig. S3. The schematic diagram of the photoconductive device based on the crystal of [DTHPE]Pb₄Cl₁₀.

Fig. S4. Temporal measurements of photocurrents, affording the t_{rise}/t_{fall} values of the photoelectric device.

Fig. S5. Logarithmic I-V characteristics of [DTHPE]Pb₄Cl₁₀ on the basis of the SCLC method.

Fig. S6. The PLQY of bulk crystals for [DTHPE]Pb₄Cl₁₀.

Fig. S7. 3D PL excitation and emission correlation map.

Fig. S8. The SEM images of bulk crystals (a) and hand-grinded microscale crystals (b)

of [DTHPE]Pb₄Cl₁₀.

Fig. S9. The thermogravimetric (TG) analyses curves for [DTHPE]Pb₄Cl₁₀.

Fig. S10. Photographs of UV-LED lamps (left) and the LED coated with a thin layer of $[DTHPE]Pb_4Cl_{10}$ (right), in the states of turn off and on.

Compound	[DTHPE]Pb ₄ Cl ₁₀
chemical formula	$C_5N_2H_{10}Pb_2Cl_5$
fw	689.80
Space group	Pbca
<i>a</i> /Å	16.358(19)
b/Å	8.262(10)
$c/\text{\AA}$	20.20(2)
β'^{o}	90
$V(\text{\AA}^3)$	2730(5)
Z	8
$D_{\text{calcd}}(\text{g}\cdot\text{cm}^{-3})$	3.357
Temp (K)	296(2)
$\mu (\mathrm{mm}^{-1})$	25.580
F (000)	2423
Reflections collected	32913
Unique reflections	3538
Reflections ($I > 2\sigma(I)$)	2496
GOF on F^2	1.061
$R_1, wR_2 (I > 2\sigma(I))^a$	0.0368/ 0.0820
R_1, wR_2 (all data)	0.0652/ 0.0938

Table S1. Crystal Data and Structural Refinements for [DTHPE]Pb₄Cl₁₀.

 $\frac{a}{R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|, wR_{2} = [\Sigma(F_{0}^{2} - F_{c}^{2}) / \Sigma w(F_{0})^{2}]^{1/2}}$

Table 52. Selected	bolid lengths (A) IOF [DTHPE]P04CI ₁₀ .	
Pb(1)-Cl(2)	2.752(3)	Pb(2)-Cl(4)#4	2.711(3)
Pb(1)-Cl(7)	2.755(3)	Pb(2)-Cl(3)#4	2.803(3)
Pb(1)-Cl(1)	3.054(4)	Pb(2)-Cl(1)	3.042(4)
Pb(1)-Cl(1)#1	3.065(4)	Pb(2)-Cl(1)#5	3.051(4)
Pb(1)-Cl(7)#2	3.187(4)	Pb(2)-Cl(2)	3.114(4)
Pb(1)-Cl(3)	3.193(3)	Pb(2)-Cl(3)#1	3.190(4)
Pb(1)-Cl(4)	3.254(4)	Pb(2)-Cl(4)#1	3.327(4)
Pb(1)-Cl(2)#2	3.315(4)	Pb(2)-Cl(7)	3.348(4)

Table S2. Selected bond lengths (Å) for [DTHPE]Pb₄Cl₁₀.

Symmetry transformations used to generate equivalent atoms: #1 -*x*+1/2, *y*+1/2, *z*; #2 -*x*+1/2, *y*-1/2, *z*; #3 *x*+1/2, *y*, -*z*+1/2; #4 *x*-1/2, *y*, -*z*+1/2; #5 -*x*, *y*+1/2, -*z*+1/2.

Table S3. Selected bond angles ([°]) for [DTHPE]Pb₄Cl₁₀.

Cl(2)-Pb(1)-Cl(7)	83.38(10)	Cl(4)#4-Pb(2)-Cl(3)#4	83.36(10)
Cl(2)-Pb(1)-Cl(1)	77.40(9)	Cl(4)#4-Pb(2)-Cl(1)	79.29(10)
Cl(7)-Pb(1)-Cl(1)	76.74(10)	Cl(3)#4-Pb(2)-Cl(1)	75.71(10)
Cl(2)-Pb(1)-Cl(1)#1	75.29(9)	Cl(4)#4-Pb(2)-Cl(1)#5	77.45(9)
Cl(7)-Pb(1)-Cl(1)#1	78.91(10)	Cl(3)#4-Pb(2)-Cl(1)#5	77.17(10)
Cl(1)-Pb(1)-Cl(1)#1	145.11(6)	Cl(1)-Pb(2)-Cl(1)#5	145.93(6)
Cl(2)-Pb(1)-Cl(7)#2	148.78(7)	Cl(4)#4-Pb(2)-Cl(2)	94.57(10)
Cl(7)-Pb(1)-Cl(7)#2	98.59(10)	Cl(3)#4-Pb(2)-Cl(2)	147.88(7)
Cl(1)-Pb(1)-Cl(7)#2	72.85(8)	Cl(1)-Pb(2)-Cl(2)	72.43(8)
Cl(1)#1-Pb(1)-Cl(7)#2	135.82(8)	Cl(1)#5-Pb(2)-Cl(2)	133.82(9)
Cl(2)-Pb(1)-Cl(3)	86.39(10)	Cl(4)#4-Pb(2)-Cl(3)#1	97.40(10)
Cl(7)-Pb(1)-Cl(3)	150.24(8)	Cl(3)#4-Pb(2)-Cl(3)#1	146.30(6)
Cl(1)-Pb(1)-Cl(3)	127.90(8)	Cl(1)-Pb(2)-Cl(3)#1	137.74(8)
Cl(1)#1-Pb(1)-Cl(3)	71.46(8)	Cl(1)#5-Pb(2)-Cl(3)#1	70.22(8)
Cl(7)#2-Pb(1)-Cl(3)	104.51(8)	Cl(2)-Pb(2)-Cl(3)#1	65.82(7)
Cl(2)-Pb(1)-Cl(4)	142.12(7)	Cl(4)#4-Pb(2)-Cl(4)#1	147.54(6)
Cl(7)-Pb(1)-Cl(4)	103.25(10)	Cl(3)#4-Pb(2)-Cl(4)#1	92.97(9)
Cl(1)-Pb(1)-Cl(4)	140.48(8)	Cl(1)-Pb(2)-Cl(4)#1	131.12(9)
Cl(1)#1-Pb(1)-Cl(4)	69.70(8)	Cl(1)#5-Pb(2)-Cl(4)#1	70.31(8)
Cl(7)#2-Pb(1)-Cl(4)	68.06(7)	Cl(2)-Pb(2)-Cl(4)#1	104.82(7)
Cl(3)-Pb(1)-Cl(4)	69.33(10)	Cl(3)#1-Pb(2)-Cl(4)#1	68.46(10)
Cl(2)-Pb(1)-Cl(2)#2	91.76(10)	Cl(4)#4-Pb(2)-Cl(7)	147.02(7)
Cl(7)-Pb(1)-Cl(2)#2	144.48(8)	Cl(3)#4-Pb(2)-Cl(7)	95.78(10)
Cl(1)-Pb(1)-Cl(2)#2	67.88(8)	Cl(1)-Pb(2)-Cl(7)	68.68(8)
Cl(1)#1-Pb(1)-Cl(2)#2	133.81(8)	Cl(1)#5-Pb(2)-Cl(7)	134.69(8)
Cl(7)#2-Pb(1)-Cl(2)#2	68.55(10)	Cl(2)-Pb(2)-Cl(7)	68.95(10)
Cl(3)-Pb(1)-Cl(2)#2	63.49(7)	Cl(3)#1-Pb(2)-Cl(7)	100.97(7)
Cl(4)-Pb(1)-Cl(2)#2	101.99(7)	Cl(4)#1-Pb(2)-Cl(7)	65.38(7)

Symmetry transformations used to generate equivalent atoms: #1 -*x*+1/2, *y*+1/2, *z*; #2 -*x*+1/2, *y*-1/2, *z*; #4 *x*-1/2, *y*, -*z*+1/2; #5 -*x*, *y*+1/2, -*z*+1/2.

D-H ···A	d(D-H)	$d(H \cdot \cdot A)$	$d(D \cdot \cdot A)$	<(DHA)
N(2)-H(2)···Cl(2)	0.86	2.53	3.3171	152
C(1)- $H(1)$ ···Cl(3)	0.93	2.67	3.5598	160

Table S4. Hydrogen bonds data for [DTHPE]Pb₄Cl₁₀.

Table S5. Comparison of the broadband white light emission properties of $[DTHPE]Pb_4Cl_{10}$ and previously reported hybrid lead chlorine halide.

Hybrid halides	Dimension	PLQE	Ref.
(BZA) ₂ PbCl ₄	2D	3.57%	1
$(H_2DABCO)(Pb_2Cl_6)$	3D	2.5%	2
(EDBE)PbCl ₄	2D	2%	3
(2meptH ₂)PbCl ₄	2D	1.05%	4
$(C_4H_9NH_3)_2PbCl_4$	2D	1%	5
(PEA) ₂ PbCl ₄	2D		6
[DTHPE]Pb ₄ Cl ₁₀	2D	8.86%	This work

Reference

[1] M. H. Jung, Inorg. Chem. 2019, 58, 6748-6757.

[2] G. E. Wang, G. Xu, M. S. Wang, L. Z. Cai, W. H. Li and G. C. Guo, *Chem. Sci.* 2015. **6**. 7222-7226.

[3] E. R. Dohner, A. Jaffe, L. R. Bradshaw and H. I. Karunadasa, *J. Am. Chem. Soc.* 2014, **136**,13154-13157.

[4] S. S. Wang, Y. P. Yao, Z. Y. Wu, Y. Peng, L. N. Li and J. H. Luo, *J. Mater. Chem. C*. 2018, **6**, 4053.

[5] C. M. Ji, S. S. Wang, L. N. Li, Z. H. Sun, M. C. Hong and J. H. Luo, *Adv. Funct. Mater.* 2019, **29**, 1805038.

[6]S. Yang, Z. H. Lin, J. W. Wang, Y. X. Chen, Z. D. Liu, E. Yang, J. Zhang and Q. D. Ling, *ACS Appl. Mater. Interfaces.* 2018, **10**, 15980-15987.