Supporting Information for
Spontaneous $\quad \mathbf{N}_{\mathbf{2}}$-diboranylation of of $\left[\mathbf{W}\left(\mathbf{N}_{2}\right)_{2}(\text { dppe })_{2}\right]$ with
$\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}$
Lisa C. Haufe, Merle Arrowsmith, Maximilian Dietz, Annalena Gärtner, Rüdiger Bertermannand Holger Braunschweig*
Institute for Inorganic Chemistry and Institute for Sustainable Chemistry \& Catalysis withBoron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Table of Contents
Methods and materials 2
Synthetic procedures 4
NMR spectra 12
IR spectra 49
UV-vis spectra 57
X-ray crystallographic data 61
Computational details 71
References 79

Methods and materials

All manipulations were performed under dry nitrogen atmosphere using Schlenk techniques or in a glovebox filled with argon. Deuterated solvents were dried over molecular sieves and degassed by three freeze-pump-thaw cycles prior to use. All other solvents were distilled and degassed from appropriate drying agents. The deuterated as well as non-deuterated solvents were stored under argon over activated $4 \AA$ molecular sieves. NMR spectra were acquired either on a Bruker Avance Neo I 500, Bruker Avance Neo I 600 or a Bruker Avance 400 NMR spectrometer. Chemical shifts (δ) are reported in parts per million ($\mathrm{ppm} \mathrm{)} \mathrm{and} \mathrm{internally}$ referenced to residual solvent peaks. Heteronuclei NMR spectra are referenced to external standards (${ }^{11} \mathrm{~B}: \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} ;{ }^{31} \mathrm{P}: 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$). NMR multiplicities are given as: s (singlet), d (doublet), t (triplet), sept (septet), m (multiplet). The solid-state ${ }^{11} \mathrm{~B}$ RSHE/MAS (RSHE = rotor synchronized Hahn-Echo) NMR spectra of 1-CAAC was recorded using a Bruker Avance Neo 400 spectrometer operating at 128.4 MHz , using a 4 mm (o. d.) ZrO_{2} rotor. Chemical shifts were calibrated for all nuclei externally by adjusting the field manually, so that the low-field ${ }^{13} \mathrm{C}$ NMR shift of adamantane appears at 38.48 ppm to comply with IUPAC recommendations for reference. The solid-state ${ }^{11} \mathrm{~B}$ magic-angle spinning (MAS) spectra was acquired by a rotorsynchronized Hahn-Echo (RSHE) at a spinning speed of 14.8 kHz . The ${ }^{11} \mathrm{~B}$ second-order quadrupolar powder pattern of 1-CAAC (Figure S22) was simulated with the software package SOLA ${ }^{1}$ within Topspin ${ }^{\text {TM }}$ by Bruker. IR spectra were recorded on a Bruker FT-IR spectrometer ALPHA II inside a glovebox. UV-vis spectra were measured on a METTLER TOLEDO UV-vis-Excellence UV5 spectrophotometer at room temperature. Elemental analyses were performed on an Elementar vario MICRO cube elemental analyzer.

As similar compounds have been shown to be very sensitive towards moisture in previous work, ${ }^{2}$ reactions were performed in silanised glassware or Kartell $^{\mathrm{TM}}$ polyethylene sample tubes. sealable NMR tubes were silanised by adding approximately 0.2 mL of hexamethyldisilazane (HMDS) and heated to reflux for 1 min using a heat gun, prior to removal of the residual HMDS in vacuo while heating with a heat gun for 1 min .

Unless stated otherwise, solvents and reagents were purchased from Sigma-Aldrich or Alfa Aesar. W $\left(\mathrm{N}_{2}\right)_{2}(\text { dppe })_{2},{ }^{3}$ CAAC (1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-
ylidene), ${ }^{4} \mathrm{I}$ i Pr (1,3-diisopropylimidazol-2-ylidene), ${ }^{5} \mathrm{PMe}_{3},{ }^{6} \mathrm{PCy}_{3}{ }^{7}$ and CNMes^{*} (2,4,6-tris(tert-butyl)phenylisocyanide) ${ }^{8}$ were synthesised using literature procedures.

Synthetic procedures

$\left[\mathrm{BrW}(\text { dppe })_{2} \mathrm{NNB}\left(\mathrm{Br}^{2}\right) \mathrm{BBr}_{2} \mathrm{SMe}_{2}\right]$, $1-\mathrm{SMe}_{2}$

$\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}(\text { dppe })_{2}\right](15 \mathrm{mg}, 15 \mu \mathrm{~mol})$ was suspended in benzene $(0.3 \mathrm{~mL})$ in a sealable NMR tube. $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}(6.7 \mathrm{mg}, 15 \mu \mathrm{~mol}, 1.0$ equiv.) was added, followed by benzene (0.3 mL). The orange suspension turned to a dark red-brown solution with accompanying gas evolution. The conversion to $\mathbf{1 - S M e} 2$ was almost quantitative (ca. 96%) as determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. Orange single crystals of $\mathbf{1 -} \mathbf{S M e}_{2}$ suitable for X-ray crystallography were obtained from a benzene/pentane mixture. Note: Compound 1-SMe \boldsymbol{e}_{2} was used and characterised in situ as partial decomposition was observed after evaporation of the solvent under ambient glovebox conditions. This is probably due to the partial loss of the coordinating SMe 2_{2} group during evaporation. ${ }^{1} \mathrm{H}$ NMR $\left(500.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=7.79(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{Ph}-$ CH), $7.37\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 8 \mathrm{H}, m-\mathrm{Ph}-\mathrm{CH}\right)$, 7.16-7.10(m, 12 H , o/p-Ph-CH, overlap with $\left.C_{6} D_{6}\right), 6.93\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, p-\mathrm{Ph}-\mathrm{CH}\right), 6.84\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 8 \mathrm{H}, m-\mathrm{Ph}-\mathrm{CH}\right), 2.82-2.63$ $\left.(\mathrm{m}, 8 \mathrm{H}, \mathrm{PCH})_{2}\right), 1.71\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{BS}\left(\mathrm{CH}_{3}\right)_{2}+\right.$ free $\left.S\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta(\mathrm{ppm})=138.3-137.8\left(\mathrm{~m}, i-\mathrm{Ph}-C_{q}\right), 137.4-136.9\left(\mathrm{~m}, i-\mathrm{Ph}-C_{q}\right), 134.9-134.6(\mathrm{~m}, o-\mathrm{Ph}-\mathrm{CH})$, 134.3-134.1 (m, o-Ph-CH), 129.9 (s, $p-\mathrm{Ph}-\mathrm{CH}$), 129.1-128.9 (m, $m-\mathrm{Ph}-\mathrm{CH}$), 128.9 ($\mathrm{s}, p-\mathrm{Ph}-$ $C \mathrm{H}), 127.6-127.4(\mathrm{~m}, m-\mathrm{Ph}-\mathrm{CH}), 32.9-32.4\left(\mathrm{~m}, \mathrm{CH}_{2}, \mathrm{PCH}_{2}\right), 20.7\left(\mathrm{~s}, \mathrm{CH}_{3}, \mathrm{~S}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.8(\mathrm{~s}$ $\left.\mathrm{CH}_{3}, \mathrm{~S}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (160.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): not detected. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202.5 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=33.2\left(\mathrm{~s}+\right.$ satellites, $\left.{ }^{1} J_{\mathrm{WP}}=288 \mathrm{~Hz}\right)$. FT-IR $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right): \tilde{v}(\mathrm{NN})=1535 \mathrm{~cm}^{-1}$. UVvis $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right): \lambda_{\text {max }}=305 \mathrm{~nm}$.

$\left[\mathrm{BrW}(\mathrm{dppe})_{2} \mathbf{N N B}(\mathrm{Br}) \mathrm{BBr}_{2}\left(\mathrm{PMe}_{3}\right)\right]$, $\mathbf{1 - \mathrm { PMe } _ { 3 }}$

$\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}(\text { dppe })_{2}\right](40.0 \mathrm{mg}, 38.6 \mu \mathrm{~mol})$ was suspended in benzene $(0.3 \mathrm{~mL})$ in a sealable NMR tube. $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}(18.0 \mathrm{mg}, 38.6 \mu \mathrm{~mol}, 1.00$ equiv.) was added, followed by benzene $(0.3 \mathrm{~mL})$. The orange suspension turned to a dark red-brown solution with accompanying gas evolution. After $5 \mathrm{~min}, \mathrm{PMe}_{3}$ ($50.0 \mu \mathrm{~L}, 492 \mu \mathrm{~mol}, 12.7$ equiv.) was added and the solution remained dark red-brown. After 10 min , excess PMe_{3} was removed by injecting N_{2} gas into the NMR tube. Pentane $(1.0 \mathrm{~mL})$ was added to initiate precipitation of an orange solid. The orange suspension was filtered and the resulting solid washed with benzene $(1 \times 0.1 \mathrm{~mL})$ followed by pentane $(3 \times 1.5 \mathrm{~mL})$. The resulting solid was dried under ambient glovebox conditions overnight to afford 1-PMe $\mathbf{3}_{3}(48.2 \mathrm{mg}, 33.8 \mu \mathrm{~mol}, 88 \%$) as an orange solid. Orange single crystals suitable for X-ray crystallography were obtained from a benzene solution. ${ }^{1} \mathrm{H}$ NMR
(500.1 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=7.84(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{Ph}-\mathrm{C} H), 7.41\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 8 \mathrm{H}, m-\mathrm{Ph}-\mathrm{C} H\right)$, 7.19-7.13 (m, 12H, o/p-Ph-CH, overlap with $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), 6.94\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 4 \mathrm{H}, p-\mathrm{Ph}-\mathrm{CH}\right), 6.86$ ($\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 8 \mathrm{H}, m$-Ph-CH), 2.83-2.66 (m, $\left.\left.8 \mathrm{H}, \mathrm{PCH}\right)_{2}\right), 1.06\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=11.8 \mathrm{~Hz}, 9 \mathrm{H}\right.$, $\left.\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=138.7-138.3\left(\mathrm{~m}, i-\mathrm{Ph}-C_{q}\right), 137.5-$ $137.1\left(\mathrm{~m}, i-\mathrm{Ph}-C_{q}\right), 134.8(\mathrm{~m}, o-\mathrm{Ph}-\mathrm{CH}), 134.2(\mathrm{~m}, o-\mathrm{Ph}-\mathrm{CH}), 129.8(\mathrm{~s}, p-\mathrm{Ph}-\mathrm{CH}), 129.1(\mathrm{~m}$, $m-\mathrm{Ph}-\mathrm{CH}), 128.9(\mathrm{~s}, p-\mathrm{Ph}-\mathrm{CH}), 127.5(\mathrm{~m}, m-\mathrm{Ph}-\mathrm{CH}), 32.9-32.5\left(\mathrm{~m}, \mathrm{PCH}_{2}\right), 8.0(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=44.5 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(128.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=-7.0(\mathrm{br} \mathrm{s}, \mathrm{fwmh} \approx 190 \mathrm{~Hz}$, $B \mathrm{PMe}_{3}$). Note: The ${ }^{11} B$ NMR resonance can only be observed at the high in-situ concentrations of the reaction mixture. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(202.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=33.3\left(\mathrm{~s},{ }^{1} J_{\mathrm{WP}}=289 \mathrm{~Hz}\right.$, dppe), -13.1 (br s, fwmh $\approx 50 \mathrm{~Hz}, \mathrm{PMe}_{3}$). FT-IR (solid-state): $\tilde{v}(\mathrm{NN})=1528 \mathrm{~cm}^{-1}$. UV-vis $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right): \lambda_{\max }=318 \mathrm{~nm}$. Elemental analysis [\%] calculated for $\mathrm{C}_{55} \mathrm{H}_{57} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{P}_{5} \mathrm{~W}$ ($1426.02 \mathrm{~g} \mathrm{~mol}^{-1}$): C 46.33, H 4.03, N 1.96 ; found: C 46.22, H 4.38, N 1.95 .

$\left[\mathbf{B r W}(\mathbf{d p p e})_{2} \mathbf{N N B}(\mathbf{B r}) \mathbf{B B r}_{2}\left(\mathbf{P C y}_{3}\right)\right], \mathbf{1 - P C y}{ }_{3}$

$\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}(\text { dppe })_{2}\right](40.0 \mathrm{mg}, 38.6 \mu \mathrm{~mol})$ was suspended in benzene $(1.5 \mathrm{~mL})$ in a polyethylene vial. $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}(18.0 \mathrm{mg}, 38.6 \mu \mathrm{~mol}, 1.00$ equiv.) was added with stirring, followed by benzene (0.5 mL). The orange suspension turned to a dark red-brown solution with accompanying gas evolution. The solution was stirred for 5 min , after which $\mathrm{PCy}_{3}(10.8 \mathrm{mg}$, $38.6 \mu \mathrm{~mol}, 1.00$ equiv.) was added, followed by benzene (0.5 mL). The dark red-brown solution was stirred for 2 h , then treated with pentane $(8.0 \mathrm{~mL})$ to induce precipitation. The light orangebrown suspension was filtered and the resulting solid washed with pentane $(3 \times 2.0 \mathrm{~mL})$. The resulting solid was dried under ambient glovebox conditions overnight to afford $\mathbf{1 - P C y} \mathbf{y}_{\mathbf{3}}$ as a beige yellow solid ($37.2 \mathrm{mg}, 22.8 \mu \mathrm{~mol}, 60 \%$). Vapor diffusion of pentane into the benzene solution instead of precipitation increased the isolated yield to $82 \%(51.7 \mathrm{mg}, 31.7 \mu \mathrm{~mol})$. Yellow single crystals suitable for X-ray crystallography were obtained from a benzene/pentane mixture. ${ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=8.04(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{Ph}-\mathrm{C} H), 7.44\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right.$, $8 \mathrm{H}, m-\mathrm{Ph}-\mathrm{CH}), 7.15$ (t, overlap with $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 4 \mathrm{H}, p-\mathrm{Ph}-\mathrm{CH}\right), 6.97-6.91(\mathrm{~m}, 12 \mathrm{H}, o / p-\mathrm{Ph}-\mathrm{CH}$), $6.85\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 8 \mathrm{H}, m-\mathrm{Ph}-\mathrm{CH}\right), 2.91-2.66\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{PCH}_{2}(\mathrm{dppe})+\mathrm{Cy}-\mathrm{PCH}\right), 2.37-2.27$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{Cy}-\mathrm{CH}_{2}$), 1.71-1.60 (m, 12H, Cy-CH2), 1.58-1.51 (m, 3H, Cy-CH2), 1.23-1.14 (m, $6 \mathrm{H}, \mathrm{Cy}-\mathrm{CH}_{2}$, overlap with residual pentane), 1.14-1.04 (m, 3H, Cy-CH2). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=140.0-139.5\left(\mathrm{~m}, i-\mathrm{Ph}-C_{q}\right), 137.5-136.9\left(\mathrm{~m}, i-\mathrm{Ph}-C_{q}\right), 135.6-135.3(\mathrm{~m}$, $o-\mathrm{Ph}-\mathrm{CH}$), 134.4-134.1 (m, $o-\mathrm{Ph}-\mathrm{CH}$), 129.7 ($\mathrm{s}, p-\mathrm{Ph}-\mathrm{CH}$), $129.2-129.0$ (m, $m-\mathrm{Ph}-\mathrm{CH}$), 128.6 (s, p - $\mathrm{Ph}-\mathrm{CH}$, overlap with residual $\mathrm{C}_{6} \mathrm{H}_{6}$), 127.3-127.2 (m, $m-\mathrm{Ph}-\mathrm{CH}$), $34.2-33.8\left(\mathrm{~m}, \mathrm{PCH}_{2}\right)$,
$32.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=30 \mathrm{~Hz}, \mathrm{Cy}-\mathrm{PCH}\right), 29.1\left(\mathrm{~d}, J_{\mathrm{PC}}=3.6 \mathrm{~Hz}, \mathrm{Cy}-\mathrm{CH}_{2}\right), 27.8\left(\mathrm{~d}, J_{\mathrm{PC}}=10 \mathrm{~Hz}, \mathrm{Cy}-\mathrm{CH}_{2}\right)$, 26.3 (s, Cy- CH_{2}). ${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): not detected. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202.5 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=37.6\left(\mathrm{~s}+\right.$ satellites, ${ }^{1} J_{\mathrm{WP}}=289 \mathrm{~Hz}$, dppe $),-5.0\left(\mathrm{br} \mathrm{s}, \mathrm{fwmh} \approx 35 \mathrm{~Hz}, P \mathrm{Cy}_{3}\right)$. FT-IR (solid-state): $\tilde{v}(\mathrm{NN})=1528 \mathrm{~cm}^{-1}$. UV-vis $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right): \lambda_{\max }=306 \mathrm{~nm}$. Elemental analysis [\%] calculated for $\mathrm{C}_{70} \mathrm{H}_{81} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{P}_{5} \mathrm{~W}$ (1630.38 g mol${ }^{-1}$): C 51.57, H 5.01, N 1.72; found: C 51.85, H 4.95, N 1.75 .

[$\left.\operatorname{BrW}(\text { dppe })_{2} \mathrm{NNB}\left(\mathrm{Br}^{2}\right) \mathrm{BBr}_{2}\left(\mathrm{CNMes}^{*}\right)\right]$, 1-CNMes*

$\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dppe})_{2}\right](40.0 \mathrm{mg}, 38.6 \mu \mathrm{~mol})$ was suspended in benzene $(0.3 \mathrm{~mL})$ in a sealable NMR tube. $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}(18.0 \mathrm{mg}, 38.6 \mu \mathrm{~mol}, 1.00$ equiv.) was added, followed by benzene $(0.3 \mathrm{~mL})$. The orange suspension turned to a dark red-brown solution with accompanying gas evolution. After $10 \mathrm{~min}, 2,4,6$-tris(tert-butyl)phenyl isocyanide ($11.5 \mathrm{mg}, 42.4 \mu \mathrm{~mol}, 1.10$ equiv.) was added as a solid and the solution stayed dark red-brown. Overnight, dark brown crystals precipitated from the solution. The supernatant was decanted and the crystals were washed with benzene $(3 \times 0.5 \mathrm{~mL})$, followed by pentane $(3 \times 1.0 \mathrm{~mL})$. The resulting solid was dried under ambient glovebox conditions overnight to afford 1-CNMes* as dark brown crystals ($56.6 \mathrm{mg}, 34.9 \mu \mathrm{~mol}, 90 \%$). Orange single crystals suitable for X-ray crystallography were obtained from a benzene solution. ${ }^{1} \mathrm{H}$ NMR ($600.2 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=7.61-7.56(\mathrm{~m}$, $8 \mathrm{H}, o-\mathrm{Ph}-\mathrm{CH}), 7.45\left(\mathrm{~s}, 2 \mathrm{H}, m\right.$-Mes*-CH), 7.33-7.25 (m, 12H, m/p-Ph-CH), $7.18\left(\mathrm{t},{ }^{3} \mathrm{H}_{\mathrm{HH}}=\right.$ $7.3 \mathrm{~Hz}, 4 \mathrm{H}, p-\mathrm{Ph}-\mathrm{CH}), 7.01\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 8 \mathrm{H}, m-\mathrm{Ph}-\mathrm{CH}\right), 6.89(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, o-\mathrm{Ph}-\mathrm{CH}), 2.97-$ $2.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right), 2.78-2.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.50\left(\mathrm{~s}, 18 \mathrm{H}, o-\mathrm{Mes}^{*}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.33(\mathrm{~s}, 9 \mathrm{H}, p-$ Mes*-C(CH3) $\left.)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=155.4\left(\mathrm{~s}, p-\mathrm{Mes}^{*}-C_{q}\right), 149.6$ (s, o-Ph-Cq), 139.0-138.7 (m, $i-\mathrm{Ph}-C_{q}$), 136.6-136.3 (m, $i-\mathrm{Ph}-C_{q}$), 134.6 (m, o-Ph-CH), 134.1 (m,o-Ph-CH), 129.8 ($\mathrm{s}, p-\mathrm{Ph}-\mathrm{CH}), 129.2(\mathrm{~s}, p-\mathrm{Ph}-\mathrm{CH}), 128.9(\mathrm{~m}, m-\mathrm{Ph}-C \mathrm{H}), 128.2\left(\mathrm{~m}, \mathrm{~B} C_{q} \mathrm{~N}\right)$, 127.5 (m, m-Ph-CH), 123.0 (s, m-Mes*- CH), 118.7 (i-Mes*- C_{q}, identified by HMBC), 36.3 (s , o-Mes*- $C\left(\mathrm{CH}_{3}\right)_{3}$), $36.0\left(\mathrm{~s}, p\right.$-Mes*- $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right), 33.3-32.9(\mathrm{~m}, \mathrm{PCH} 2), 31.2\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$, p-Mes*$\left.\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.6\left(\mathrm{~s}, \mathrm{CH}_{3} \text {, o-Mes*-C(} \mathrm{CH}_{3}\right)_{3}\right) .{ }^{11} \mathrm{~B}$ NMR $\left(192.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: not detected. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(243.0 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=34.2\left(\mathrm{~s},{ }^{1} J_{\mathrm{WP}}=288 \mathrm{~Hz}\right)$. FT-IR (solid-state): $\tilde{v}(\mathrm{C} \equiv \mathrm{N})=2259 \mathrm{~cm}^{-1}, \tilde{v}(\mathrm{NN})=1545 \mathrm{~cm}^{-1}$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}=268 \mathrm{~nm}$. Elemental analysis [\%] calculated for $\mathrm{C}_{71} \mathrm{H}_{77} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{3} \mathrm{P}_{4} \mathrm{~W} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\left(1777.62 \mathrm{~g} \mathrm{~mol}^{-1}\right): \mathrm{C} 56.08$, H 5.05, N 2.36; found: C 55.94, H 5.23, N 2.35 .

$\left[\mathrm{BrW}(\mathrm{dppe})_{2} \mathbf{N N B}(\mathrm{Br}) \mathrm{BBr}_{2}(\mathbf{C A A C})\right]$, 1-CAAC

$\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dppe})_{2}\right](200 \mathrm{mg}, 193 \mu \mathrm{~mol})$ was placed in a polyethylene vial and was suspended in benzene (2.0 mL). $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}(89.9 \mathrm{mg}, 193 \mu \mathrm{~mol}, 1.00$ equiv.) was added as a solid with stirring and subsequent addition of benzene $(1.5 \mathrm{~mL})$. The orange suspension turned to a dark red-brown solution with accompanying gas evolution. The solution was stirred for 15 min , after which CAAC ($82.6 \mathrm{mg}, 289 \mu \mathrm{~mol}, 1.50$ equiv.) was added, followed by benzene (0.5 mL). The dark red-brown solution was stirred for 3.5 h , then treated with pentane $(5.0 \mathrm{~mL})$ to induce precipitation. The yellow-orange suspension was filtered and the resulting solid washed with benzene ($2 \times 0.2 \mathrm{~mL}$) and pentane ($3 \times 4 \mathrm{~mL}$). The resulting solid was dried under ambient glovebox conditions overnight to afford 1-CAAC as a yellow-orange solid ($275 \mathrm{mg}, 168 \mu \mathrm{~mol}$, $87 \%) .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=8.12-8.04(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}), 8.04-7.96(\mathrm{~m}, 4 \mathrm{H}$, Ph-CH), 7.51-7.43 (m, 4H, Ph-CH), 7.43-7.35 (m, 4H, Ph-CH), 7.15-7.06 (m, 7H, overlap with $\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{Ph}-\mathrm{CH}+m / p-\mathrm{Dip}-\mathrm{CH}\right), 6.98-6.80(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}), 3.36-3.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.15-3.03 (m, 1H, CH(CH3 $\left.)_{2}\right), 2.96-2.65(\mathrm{~m}, 8 \mathrm{H}, \mathrm{PCH} 2), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.95\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=5.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.63\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} 2\right), 1.44(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=5.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.38\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 1.20\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=5.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, overlap with residual pentane), $0.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, overlap with residual pentane). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125.8$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=221.7\left(C_{\text {Carbene }}-C_{q}\right.$, identified by HMBC), $146.9\left(o-\right.$ Dip- $\left.C_{q}\right)$, 146.8 (o-Dip- C_{q}), 140.3-139.8 (m, $2 \times i-\mathrm{Ph}-C_{q}$), 138.1-137.6 (m, $i-\mathrm{Ph}-C_{q}$), 136.5-136.0 (m, $i-\mathrm{Ph}-C_{q}$), 135.8-135.6 (m, Ph-CH), 135.2-134.9 (m, Ph-CH), 134.6-134.3 (m, Ph-CH), 134.3-134.1 (m, $\mathrm{Ph}-\mathrm{CH}$), 134.0 (s, i-Dip- C_{q}), 129.7 ($\mathrm{s}, \mathrm{Ph}-\mathrm{CH}$), 129.7-129.6 (m, Ph-CH), 129.3-129.0 (m, PhCH), 128.7-128.6 (m, Ph-CH), 128.5-128.4 (m, Ph-CH, identified by DEPT), 128.4 (p-Dip$C H$, identified by DEPT), 127.4-127.0 (m, Ph-CH), 125.8 (s, m-Dip-CH), 124.9 (s, m-Dip-CH), $79.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{2}\right), 54.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}, C\left(\mathrm{CH}_{3}\right)_{2}\right), 51.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 35.2\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 35.1-34.6(\mathrm{~m}$, $\left.\mathrm{PCH}_{2}\right), 34.4-33.9\left(\mathrm{~m}, \mathrm{PCH}_{2}\right), 30.4\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 30.1\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.9$ (s, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.6\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.9\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.4\left(\mathrm{~s}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.4\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 25.2 (s, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{11} \mathrm{~B}$ NMR ($160.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): not detected. ${ }^{11} \mathrm{~B}$ NMR (RSHE/MAS, $14.8 \mathrm{kHz}): \delta_{\text {iso }}=23.7\left(C_{\mathrm{Q}}=3200 \mathrm{MHz}, \eta_{\mathrm{Q}}=0.50, \mathrm{~N}-B-\mathrm{B}\right), \delta_{\text {iso }}=-6.2\left(C_{\mathrm{Q}}=2400 \mathrm{MHz}\right.$, $\left.\eta_{\mathrm{Q}}=0.46\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(202.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=38.9(\mathrm{~s}), 38.4(\mathrm{~s})$. FT-IR (solidstate $): \tilde{v}(\mathrm{NN})=1536 \mathrm{~cm}^{-1}$. UV-vis $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right): \lambda_{\max }=306 \mathrm{~nm}$. Elemental analysis [\%] calculated for $\mathrm{C}_{72} \mathrm{H}_{79} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{3} \mathrm{P}_{4} \mathrm{~W}$ ($1635.42 \mathrm{~g} / \mathrm{mol}$): C 52.88, H 4.87, N 2.57; found: C 53.04, H 4.90, N 2.53.

[$\left.\mathbf{B r W}(\mathbf{d p p e})_{2} \mathbf{N N B}(\mathbf{B r}) \mathbf{B B r}_{2}(\mathbf{I i P r})\right]$, 1-IiPr

$\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}(\text { dppe })_{2}\right](40 \mathrm{mg}, 39 \mu \mathrm{~mol})$ was suspended in benzene $(0.4 \mathrm{~mL})$ in a sealable NMR tube. $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}(18 \mathrm{mg}, 39 \mu \mathrm{~mol}, 1.0$ equiv.) was added, followed by benzene $(0.2 \mathrm{~mL})$. After the addition, the orange suspension turned to a dark red-brown solution with accompanying gas evolution. After $5 \mathrm{~min}, \operatorname{IiPr}(7.0 \mathrm{mg}, 46 \mu \mathrm{~mol}, 1.2$ equiv.) was added and the solution turned dark green brown. After three days on a nutating mixer, small amounts of solid by-products were removed by filtration and the resulting dark red solution was treated with pentane (1.5 mL) to induce precipitation. The light brown suspension was filtered and the residue was washed with pentane $(3 \times 1.0 \mathrm{~mL})$. The resulting solid was dried under ambient glovebox conditions overnight to afford 1-IiPr as a light brown solid ($48 \mathrm{mg}, 32 \mu \mathrm{~mol}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR (500.1 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=8.12(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, o-\mathrm{Ph}-\mathrm{C} H), 7.47\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 8 \mathrm{H}, m-\mathrm{Ph}-\mathrm{CH}\right), 7.12(\mathrm{t}$, ${ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, p$-Ph-CH, overlap with $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), 6.97-6.82(\mathrm{~m}, 20 \mathrm{H}, o / m / p-\mathrm{Ph}-\mathrm{CH}), 6.14(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{I} i \mathrm{Pr}-\mathrm{CH}), 5.95\left(\mathrm{sept},{ }^{3} \mathrm{JH}_{\mathrm{HH}}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{I} i \mathrm{Pr}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.93-2.81(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}$, overlap with the second PCH_{2} resonance), $2.81-2.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right.$, overlap with the second PCH_{2} resonance), $1.10\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{I} i \operatorname{Pr}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta(\mathrm{ppm})=156.7\left(\mathrm{~B} C_{\text {carbene }}\right.$, identified by HMBC), 140.4-139.9 (m, $\left.i-\mathrm{Ph}-C_{q}\right), 137.2-136.5(\mathrm{~m}$, $\left.i-\mathrm{Ph}-C_{q}\right), 135.7-135.5(\mathrm{~m}, o-\mathrm{Ph}-\mathrm{CH}), 134.4-134.2(\mathrm{~m}, o-\mathrm{Ph}-\mathrm{CH}), 129.8(\mathrm{~s}, p-\mathrm{Ph}-\mathrm{CH}), 129.2-$ $129.0(\mathrm{~m}, m-\mathrm{Ph}-\mathrm{CH}), 128.6$ ($\mathrm{s}, p-\mathrm{Ph}-\mathrm{CH}$, overlap with residual $\mathrm{C}_{6} \mathrm{H}_{6}$), 127.3-127.2 (m, m-Ph$C H$), 117 (s, $\mathrm{I} i \mathrm{Pr}-\mathrm{CH}$), $50.4\left(\mathrm{~s}, \mathrm{I} i \operatorname{Pr}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 34.7-34.2\left(\mathrm{~m}, \mathrm{PCH}_{2}\right), 23.2\left(\mathrm{~s}, \mathrm{Ii} \operatorname{Pr}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($160.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): not detected. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})$ $=39.1\left(\mathrm{~s},{ }^{1} J_{\mathrm{WP}}=289 \mathrm{~Hz}\right)$. FT-IR (solid-state): $\tilde{v}(\mathrm{NN})=1550 \mathrm{~cm}^{-1}$. UV-vis $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right): \lambda_{\max }=311$ nm . Elemental analysis [\%] calculated for $\mathrm{C}_{61} \mathrm{H}_{64} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{~W} \cdot \mathrm{C}_{6} \mathrm{H}_{6}\left(1580.30 \mathrm{~g} \mathrm{~mol}^{-1}\right)$: C 50.92, H 4.46, N 3.55; found: C 50.67, H 4.71, N 3.61 .

[BrW(dppe) $\left.{ }_{2} \mathrm{NNB}(\mathrm{DMAP}) \mathrm{BBr}_{3}\right]$, 3-DMAP

$\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}(\text { dppe })_{2}\right](50 \mathrm{mg}, 48 \mu \mathrm{~mol})$ was suspended in benzene $(1.5 \mathrm{~mL})$ in a polyethylene vial. $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}$ ($23 \mathrm{mg}, 48 \mu \mathrm{~mol}, 1.0$ equiv.) was added under stirring, followed by benzene $(0.5 \mathrm{~mL})$. The orange suspension turned to a dark red-brown solution with accompanying gas evolution. After 10 min , DMAP ($5.3 \mathrm{mg}, 43 \mu \mathrm{~mol}, 0.9$ equiv.) was added and a dark green suspension was formed. After 45 min , the green suspension was filtered and the resulting solid was washed with benzene $(3 \times 2.5 \mathrm{~mL})$, THF $(2 \times 2.0 \mathrm{~mL})$ and pentane $(3 \times 3.0 \mathrm{~mL})$. The resulting solid was dried under ambient glovebox conditions to afford 3-DMAP as a light green solid ($35 \mathrm{mg}, 24 \mu \mathrm{~mol}, 56 \%$). Dark green single crystals were obtained by slow diffusion of
hexane into a saturated dichloromethane solution. ${ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=7.37$ (d, ${ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}$ DMAP), $7.36-6.87(\mathrm{~m}, 40 \mathrm{H}, o / m / p-\mathrm{Ph}-\mathrm{CH}), 5.14\left(\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, m-CH DMAP), 3.36-2.91 (br, 8H, PCH2), $2.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{DMAP}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150.9 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=154.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}, C \mathrm{~N}\left(\mathrm{CH}_{3}\right)\right.$ DMAP), 142.6 ($\mathrm{s}, o-C H$ DMAP), 134.4-133.7 ($i-\mathrm{Ph}-C_{q}$), 133.7-133.1 ($i-\mathrm{Ph}-C_{q}$), 129.8 (m, Ph-CH), 129.7 (m, Ph-CH), 128.7 (m, Ph-CH), 128.7 (m, Ph-CH), 127.9 (m, Ph-CH), 127.8 (m, Ph-CH), 103.4 (s, m-CH DMAP), 39.7 (s, CH ${ }_{3}$, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ DMAP), 31.6-30.8 (m, $\left.\mathrm{PCH}_{2}\right) .{ }^{11} \mathrm{~B}$ NMR (192.6 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$: not detected. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.243.0 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 223.15 \mathrm{~K}\right): \delta(\mathrm{ppm})=33.5\left({ }^{2} J_{\mathrm{PP}}=135 \mathrm{~Hz}\right), 24.1\left({ }^{2} J_{\mathrm{PP}}=135 \mathrm{~Hz}\right)$. FTIR (solid-state): $\tilde{v}(\mathrm{NN})=1564 \mathrm{~cm}^{-1}$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda^{1}{ }_{\text {max }}=264 \mathrm{~nm}, \lambda^{2}{ }_{\text {max }}=290 \mathrm{~nm}, \lambda^{3}{ }_{\text {max }}$ $=325 \mathrm{~nm}, \lambda^{4}$ max $=404 \mathrm{~nm}$. Elemental analysis [\%] calculated for $\mathrm{C}_{59} \mathrm{H}_{58} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{~W}$ ($1472.11 \mathrm{~g} \mathrm{~mol}^{-1}$): C 48.14, H 3.97, N 3.81; found: C 48.12, H 4.03, N 3.90 .

$\left[\operatorname{BrW}(d p p e)_{2} \mathbf{N N B}(\mathbf{B r}) \mathbf{B}(\mathbf{B r}) \mathbf{N N W B r}(\text { dppe })_{2}\right], 2$

$\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dppe})_{2}\right](40 \mathrm{mg}, 39 \mu \mathrm{~mol}, 2.0$ equiv. $)$ was suspended in benzene $(0.4 \mathrm{~mL})$ in a sealable NMR tube. $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}(9.0 \mathrm{mg}, 19 \mu \mathrm{~mol}, 1.0$ equiv.) was added, followed by benzene $(0.2 \mathrm{~mL})$. The orange suspension turned to a dark red brown solution with accompanying gas evolution. Afterwards, the mixture was heated to $60^{\circ} \mathrm{C}$ for two hours, resulting in the formation of dark green crystals. The supernatant pale orange solution was decanted and the crystals were washed with benzene $(6 \times 1.5 \mathrm{~mL})$ followed by pentane $(5 \times 1 \mathrm{~mL})$. The resulting solid was dried under ambient glovebox conditions overnight to afford $\mathbf{2}$ as dark green crystals (37 mg , $16 \mu \mathrm{~mol}, 84 \%)$. Single crystals suitable for X-ray crystallography were obtained from a benzene solution. Note: compound $\mathbf{2}$ is very poorly soluble in common organic solvents, hence the NMR samples were very weakly concentrated. ${ }^{1} \mathrm{H}$ NMR ($\left.500.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right): \delta(\mathrm{ppm})=7.76-7.70$ ($\mathrm{m}, 16 \mathrm{H}, o-\mathrm{Ph}-\mathrm{C} H$), $7.30-7.25\left(\mathrm{~m}, 24 \mathrm{H}, m / p-\mathrm{Ph}-\mathrm{CH}\right.$, overlap with $\left.\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right), 7.09-7.03(\mathrm{~m}, 24 \mathrm{H}$, $m / p-\mathrm{Ph}-\mathrm{CH}$, overlap with $\left.\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right), 6.94-6.89\left(\mathrm{~m}, 16 \mathrm{H}, o-\mathrm{Ph}-\mathrm{CH}\right.$, overlap with $\left.\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right), 2.88-$ $2.68\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{PCH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125.8 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right): \delta(\mathrm{ppm})=138.3\left(i-\mathrm{Ph}-C_{q}\right.$, identified by HMBC), 136.6 ($i-\mathrm{Ph}-C_{q}$, identified by HMBC), $134.6-134.3$ (m, o-Ph-CH), 133.8-133.6 (m, o-Ph-CH), 129.7 ($p-\mathrm{Ph}-\mathrm{CH}$, identified by HSQC), 128.5 ($\mathrm{s}, p-\mathrm{Ph}-\mathrm{CH}$), 128.5$128.3(\mathrm{~m}, m-\mathrm{Ph}-\mathrm{CH}), 127.2-127.0(\mathrm{~m}, m-\mathrm{Ph}-\mathrm{CH}), 33.3\left(\mathrm{PCH}_{2}\right.$, identified by HSQC). ${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right)$: not detected. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162.0 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right): \delta(\mathrm{ppm})=34.9(\mathrm{~s}+$ satellites, ${ }^{1} J_{\mathrm{WP}}=286 \mathrm{~Hz}$, dppe). FT-IR (solid-state): $\tilde{v}(\mathrm{NN})=1529 \mathrm{~cm}^{-1}$. UV-vis $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}\right)$: $\lambda^{1}{ }_{\text {max }}=425 \mathrm{~nm}, \lambda^{2}$ max $=437 \mathrm{~nm}$. Elemental analysis [\%] calculated for $\mathrm{C}_{104} \mathrm{H}_{96} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{P}_{8} \mathrm{~W}_{2}$ ($2358.65 \mathrm{~g} \mathrm{~mol}^{-1}$): C 52.96, H 4.10, N 2.38 ; found: C $53.34, \mathrm{H} 4.28, \mathrm{~N} 2.39$.

Attempted reduction reactions with complex 2

Note: Compound 2 shows no resonance in the ${ }^{31} P$ NMR spectrum in benzene due to high insolubility.

Reaction of 2 with KC_{8} and [Pt(nbe) $)_{3}$]: $2\left(20 \mathrm{mg}, 8.5 \mu \mathrm{~mol}, 1.0\right.$ equiv.), $\mathrm{KC}_{8}(2.9 \mathrm{mg}, 22 \mu \mathrm{~mol}$, 2.5 equiv.) and $\left[\mathrm{Pt}(\mathrm{nbe})_{3}\right]$ ($8.5 \mathrm{mg}, 18 \mu \mathrm{~mol}, 2.1$ equiv.) were suspended in benzene (0.6 mL) in a sealable NMR tube. The dark green suspension turned dark brown. After four days at room temperature, the ${ }^{31} \mathrm{P}$ NMR spectrum showed an unselective reaction with several resonances in the range of 31 to 48 ppm .

Reaction of $\mathbf{2}$ with KC_{8} and [$\left.\mathrm{Ni}(\operatorname{cod})_{2}\right]: \mathbf{2}(20 \mathrm{mg}, 8.5 \mu \mathrm{~mol}, 1.0$ equiv. $), \mathrm{KC}_{8}(2.9 \mathrm{mg}, 22 \mu \mathrm{~mol}$, 2.5 equiv.) and $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right](4.9 \mathrm{mg}, 18 \mu \mathrm{~mol}, 2.1$ equiv.) were suspended in benzene (0.6 mL) in a sealable NMR tube. The dark green suspension showed no resonance in the ${ }^{31} \mathrm{P}$ NMR spectrum. After four days at room temperature, the dark brown suspension showed an unselective reaction in the ${ }^{31} \mathrm{P}$ NMR spectrum with several resonances in the range of 31 to 48 ppm very similar to the reaction with $\left[\mathrm{Pt}(\mathrm{nbe})_{3}\right]$.

Reaction of $\mathbf{2}$ with KC_{8} and diphenylacetylene: $\mathbf{2}\left(15 \mathrm{mg}, 6.4 \mu \mathrm{~mol}, 1.0\right.$ equiv.), $\mathrm{KC}_{8}(2.1 \mathrm{mg}$, $16 \mu \mathrm{~mol}, 2.5$ equiv.) and diphenylacetylene ($4.6 \mathrm{mg}, 26 \mu \mathrm{~mol}, 4.0$ equiv.) were suspended in benzene (0.6 mL) in a sealable NMR tube. The dark green suspension turned dark brown. After one day at room temperature, the ${ }^{31} \mathrm{P}$ NMR spectrum showed an unselective reaction with several resonances in the range of -26 to 68 ppm .

Reaction of $\mathbf{2}$ with KC 8 and 4-dimethylaminopyridine: $\mathbf{2}$ ($10 \mathrm{mg}, 4.2 \mu \mathrm{~mol}, 1.0$ equiv.), KC_{8} ($1.4 \mathrm{mg}, 11 \mu \mathrm{~mol}, 2.5$ equiv.) and 4-dimethylaminopyridine ($1.1 \mathrm{mg}, 9.0 \mu \mathrm{~mol}, 2.1$ equiv.) were suspended in benzene (0.6 mL) in a sealable NMR tube. The dark green suspension turned dark red-brown. After one day at room temperature, the ${ }^{31} \mathrm{P}$ NMR spectrum showed an unselective reaction with several resonances in the range of 34 to 64 ppm .

Reaction of $\mathbf{2}$ with KC_{8} and 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene: $2(10 \mathrm{mg}, \quad 4.2 \mu \mathrm{~mol}, \quad 1.0$ equiv. $), \mathrm{KC}_{8}(1.4 \mathrm{mg}, \quad 11 \mu \mathrm{~mol}, 2.5$ equiv.) and $1-(2,6-$ diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene ($2.5 \mathrm{mg}, 8.8 \mu \mathrm{~mol}, 2.1$ equiv.) were suspended in benzene $(0.6 \mathrm{~mL})$ in a sealable NMR tube. The dark green suspension turned dark brown. After one day at room temperature, the ${ }^{31} \mathrm{P}$ NMR showed an unselective reaction with several resonances in the range of 32 to 47 ppm .

Reaction of $\mathbf{2}$ with KC_{8} and $\mathrm{PMe}_{3}: 2\left(10 \mathrm{mg}, 4.2 \mu \mathrm{~mol}, 1.0\right.$ equiv.), $\mathrm{KC}_{8}(1.4 \mathrm{mg}, 11 \mu \mathrm{~mol}$, 2.5 equiv.) were placed in a sealable NMR tube. The tube was cooled to $-78^{\circ} \mathrm{C}$ and benzene (0.6 mL) was added. $\mathrm{PMe}_{3}(0.05 \mathrm{~mL}, 490 \mu \mathrm{~mol}, 116$ equiv.) was added to the frozen reaction
mixture. After the addition, the reaction mixture was warmed to room temperature. The ${ }^{31} \mathrm{P}$ NMR spectrum of the yellow-brown suspension showed an unselective reaction with several resonances in the range of -65 to 130 ppm .

NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - S M e} \mathbf{S M}_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional resonances at 0.87 and 1.25 ppm correspond to residual pentane and the resonance at 0.29 ppm to silicon grease. The small additional resonance at 1.78 ppm corresponds to the starting material $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}$.

Figure S2. In situ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-SMe ${ }_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional resonances at $14.3,22.7$ and 34.3 ppm correspond to residual pentane and the resonance at 1.4 ppm to silicon grease.

Figure S3. In situ ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1}-\mathbf{S M e}_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S4. In situ ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-SMe ${ }_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The resonances at -0.3 ppm correspond to the starting material $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}$ and the resonance at 6.3 ppm to a unidentified impurity from $\mathrm{B}_{2} \mathrm{Br}_{4}\left(\mathrm{SMe}_{2}\right)_{2}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - P M e} \mathbf{e}_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional resonances at 0.89 and 1.24 ppm correspond to residual hexane.

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1}-\mathrm{PMe}_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional resonances at 14.4, 23.0 and 32.0 ppm correspond to residual hexane.

Figure S7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1}-\mathrm{PMe}_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S8. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{1}-\mathbf{P M e}_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - P C y _ { 3 }}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional multiplets at 0.87 and 1.26 ppm correspond to residual pentane and hexane.

Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 - P C y} \mathbf{P}_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional resonances at $14.3,22.7$ and 34.5 ppm correspond to residual pentane and additional resonances at $14.3,23.0$ and 32.0 ppm to residual hexane.

Figure S11. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1}-\mathrm{PCy}_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S12. ${ }^{11} \mathrm{~B}$ NMR spectrum of 1-PCy 3 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - C N M e s * ~ i n ~} \mathrm{CD}_{2} \mathrm{Cl}_{2}$. The additional resonances at 0.89 and 1.30 ppm correspond to residual pentane.

Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-CNMes* in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Abstract

P1 $\begin{array}{llllllllllllllllllllllllllll}140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & p p m\end{array}$

Figure S15. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-CNMes* in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S16. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 - C N M e s *}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - C A A C}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional resonances at 0.87 and 1.26 ppm correspond to residual pentane.

Figure S18. Stack-plot of ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectra at variable temperature of $\mathbf{1 - C A A C}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional resonances at 0.87 and 1.26 ppm correspond to residual pentane.

Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-CAAC in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional resonances at 14.3, 22.7 and 34.5 ppm correspond to residual pentane.

Figure S20. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-CAAC in $\mathrm{C}_{6} \mathrm{D}_{6}$.
$70^{\circ} \mathrm{C}$
\qquad

Figure S21. Stack-plot of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra at variable temperature of 1-CAAC in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S22. ${ }^{11} \mathrm{~B}$ NMR spectrum of 1-CAAC in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S23. Solid-state ${ }^{11}$ B RSHE/MAS NMR spectrum of 1-CAAC at 14.8 kHz (top: Simulation). ($\mathrm{N}-B-\mathrm{B}$): Isotropic chemical shift $\delta_{\mathrm{iso}}=23.7 \mathrm{ppm}$, quadrupolar coupling constant $C_{\mathrm{Q}}=3200 \mathrm{MHz}$, quadrupolar asymmetry parameter $\eta_{\mathrm{Q}}=0.50$; ($\mathrm{N}-\mathrm{B}-B$): Isotropic chemical shift $\delta_{\text {iso }}=-6.2 \mathrm{ppm}$, quadrupolar coupling constant $C_{\mathrm{Q}}=2400 \mathrm{MHz}$, quadrupolar asymmetry parameter $\eta_{\mathrm{Q}}=0.46$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - I i P r}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional resonances at 0.87 and 1.26 ppm correspond to residual pentane.

Figure S25. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 - I i P r}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The additional resonances at $14.3,22.7$ and 34.4 ppm correspond to residual pentane.

Figure S26. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 - I I P r}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S27. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1}-\mathrm{I} i \mathrm{Pr}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of 3-DMAP in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The additional resonances at 0.89 and 1.30 ppm correspond to residual pentane.

Figure S29. Stack-plot of ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectra at variable temperature of 3-DMAP in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3-DMAP in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S31．${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3－DMAP in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ ．
$25^{\circ} \mathrm{C}$
为
$10^{\circ} \mathrm{C}$ $-10^{\circ} \mathrm{C}$ $-30^{\circ} \mathrm{C}$ $-50^{\circ} \mathrm{C}$
$-70^{\circ} \mathrm{C}$

\qquad

Figure S32. Stack-plot of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra at variable temperature of 3-DMAP in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S33. ${ }^{11} \mathrm{~B}$ NMR spectrum of 3-DMAP in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$. The additional resonances at 0.85 and 1.22 ppm correspond to residual pentane and the additional resonance at 7.22 ppm to residual benzene.

Figure S35. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$. The additional resonances at 14.2, 22.4 and 34.0 ppm correspond to residual pentane and the resonance at 128.2 ppm to residual benzene.

Figure S36. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$.

Figure S37. ${ }^{11} \mathrm{~B}$ NMR spectrum of 2 in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$.

IR spectra

Figure S38. IR spectrum of 1-SMe ${ }_{2}$ in benzene.

Figure S39. Solid-state IR spectrum of 1-PMe ${ }_{3}$.

Figure S40. Solid-state IR spectrum of 1-PCy3.

Figure S41. Solid-state IR spectrum of $\mathbf{1 - I i P r}$.

Figure S42. Solid-state IR spectrum of 1-CAAC.

Figure S43. Solid-state IR spectrum of 1-CNMes*

Figure S44. Solid-state IR spectrum of 3-DMAP.

Figure S45. Solid-state IR spectrum of $\mathbf{2}$.

UV-vis spectra

Figure S46. UV-vis absorption spectrum of 1-SMe \mathbf{S}_{2} in benzene.

Figure S47. UV-vis absorption spectrum of 1-PMe ${ }_{3}$ in benzene.

Figure S48. UV-vis absorption spectrum of 1-PCy ${ }_{3}$ in benzene.

Figure S49. UV-vis absorption spectrum of 1-CNMes* in dichloromethane.

Figure S50. UV-vis absorption spectrum of 1-CAAC in benzene.

Figure S51. UV-vis absorption spectrum of 1-IiPr in benzene.

Figure S52. UV-vis absorption spectrum of 3-DMAP in dichloromethane.

Figure S53. UV-vis absorption spectrum of $\mathbf{2}$ in bromobenzene.

X-ray crystallographic data

The crystal data of 1-PMe3, 1-CNMes* and 1-DMAP were collected on a BRUKER D8 QuEST diffractometer with a CMOS area detector and multi-layer mirror monochromated $\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation. The crystal data of $\mathbf{2}$ were collected on a Rigaku OD XtaLAB Synergy-S diffractometer with a HDAP area detector and multi-layer mirror monochromated $\mathrm{Cu}_{\mathrm{K} \alpha}$ radiation. The crystal data of $\mathbf{1 - S M e} \mathbf{2}_{2}$ and $\mathbf{3 - D M A P}$ were collected on a BRUKER X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated $\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation. The structures were solved using the intrinsic phasing method, ${ }^{9}$ refined with the ShelXL program and expanded using Fourier techniques. ${ }^{10}$ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication nos. CCDC-2173522 (1-PCy3), 2173523 (1-SMe ${ }_{2}$), 2173524 (1CNMes*), 2173525 (1-PMe3), 2173526 (1-DMAP), 2173527 (2) and 2173528 (3-DMAP). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Refinement details for 1-SMe 2 : The benzene molecule was modelled as twofold disordered in a 67:33 ratio. ADPs within the disorder were restrained with SIMU 0.01 and the hexagonal geometry with AFIX 6.

Crystal data for 1-SMe $2: \mathrm{C}_{54} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{P} 4 \mathrm{SW} \cdot \mathrm{C}_{6} \mathrm{H}_{6}, \quad M_{\mathrm{r}}=1490.15$, orange block, $0.373 \times 0.306 \times 0.18 \mathrm{~mm}^{3}, \quad$ triclinic space group $P \overline{1}, a=10.399(5) \AA, \quad b=16.792(7) \AA$, $c=17.471(8) \AA, \alpha=90.149(13)^{\circ}, \beta=104.315(12)^{\circ}, \gamma=90.505(17)^{\circ}, V=2956(2) \AA^{3}, Z=2$, $\rho_{\text {calcd }}=1.674 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \quad \mu=4.842 \mathrm{~mm}^{-1}, \quad F(000)=1468, \quad T=100(2) \mathrm{K}, \quad R_{l}=0.0669$, $w R_{2}=0.0994,15915$ independent reflections $\left[20 \leq 58.258^{\circ}\right]$ and 700 parameters.

Figure S54. Solid-state structures of 1-SMe. Thermal displacement ellipsoids at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 1-PMe ${ }_{3}$: The structure was refined as inversion twin and the BASF parameter was refined to 0.489 . Xprep equally suggests either a C or I Lattice for the unit cell. Monoclinic I was chosen as suggested by IUCr. The asymmetric unit contains three crystallographically distinct molecules of 1-PMe 3 . Three of the six benzene molecules in the asymmetric unit showed twofold disorder. These were refined to a $32: 68$ (RESI 37 and 137), 60:40 (RESI 39 and 139) and 15:85 (RESI 42 and 142) ratio. ADPs within these disorders were restrained with SIMU 0.01 and the rings idealised with AFIX 66.

Crystal data for 1-PMe3: $\mathrm{C}_{55} \mathrm{H}_{57} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{P} 5 \mathrm{~W} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}, \quad M_{\mathrm{r}}=1582.20$, orange plate, $0.377 \times 0.337 \times 0.06 \mathrm{~mm}^{3}$, monoclinic space group $I a, a=19.060(4) \AA, b=38.289(8) \AA$, $c=28.618(8) \AA, \quad \beta=112.100(6)^{\circ}, \quad V=19351(8) \AA^{3}, \quad Z=12, \quad \rho_{\text {calcd }}=1.629 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, $\mu=4.435 \mathrm{~mm}^{-1}, F(000)=9408, T=100(2) \mathrm{K}, R_{1}=0.0382, w R_{2}=0.0596$, Flack parameter $=$ $0.498(4), 34486$ independent reflections [$2 \theta \leq 50.698^{\circ}$] and 2279 parameters.

Figure S55. Solid-state structures of 1-PMe3. Thermal displacement ellipsoids at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 1-PCy3: The asymmetric unit contains one benzene molecule modelled as twofold disordered (RESI 15 and 115) in a 21:79 ratio. Furthermore the main complex itself is the overlap of two distinct complexes, one with PCy_{3} ligand (71%, RESI 2), the other with an OPCy_{3} ligand (29%, RESI 3). The ADPs of both residues were equalised using SIMU 0.01 and the Cy groups with SAME. One of the Cy groups of RESI 2 was modelled as twofold disordered (RESI 123 and 223) in a 1:1 ratio. H1_223 could not be afixed due to partitioning of the Cy groups in PART 1 and PART 3, with the corresponding P atom being PART 1. H1_223 was positioned with DFIX_223 1.0 C1 H1 and DFIX_223 2.06 C2 H1 C6 H1.

Crystal data for 1-PCy $\mathbf{P C}_{3} \mathrm{C}_{76} \mathrm{H}_{87} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{0.29} \mathrm{P}_{5} \mathrm{~W} \cdot \mathrm{C}_{6} \mathrm{H}_{6}, \quad M_{\mathrm{r}}=1713.15$, yellow plate, $0.311 \times 0.149 \times 0.036 \mathrm{~mm}^{3}$, monoclinic space group $P 2_{1} / n, a=13.687(4) \AA, b=30.454(15) \AA$, $c=17.661(7) \AA, \quad \beta=103.815(16)^{\circ}, \quad V=7149(5) \AA^{3}, \quad Z=4, \quad \rho_{\text {calcd }}=1.592 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, $\mu=4.009 \mathrm{~mm}^{-1}, F(000)=3433, T=100(2) \mathrm{K}, R_{1}=0.0696, w R_{2}=0.1054,13255$ independent reflections $\left[2 \theta \leq 50.952^{\circ}\right]$ and 1080 parameters.

Figure S56. Solid-state structures of 1-PCy3. Thermal displacement ellipsoids at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Figure S57. Solid-state structures of 1-OPCy3. Thermal displacement ellipsoids at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Figure S58. Overlay of $\mathbf{1 - P C y}_{3}$ (green, 71\%) and $\mathbf{1 - O P C y}_{3}$ (red/orange, 29\%) in the asymmetric unit in capped stick representation.

Refinement details for 1-CNMes*: The following most disagreeable reflection (-1 20) has been omitted during refinement. The asymmetric unit contains a twofold rotationally disordered benzene molecule (RESI 13 and 113) in a 16:84 ratio. ADPs within this disorder were restrained with SIMU 0.01 and the rings idealised with AFIX 66.

Crystal data for 1-CNMes*: $\mathrm{C}_{68} \mathrm{H}_{74} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{3} \mathrm{P} \mathrm{P}_{4} \mathrm{~W} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{1.5}, M_{\mathrm{r}}=1738.50$, orange block, $0.348 \times 0.314 \times 0.144 \mathrm{~mm}^{3}$, triclinic space group $\overline{P 1}, \quad a=14.517(3) \AA, \quad b=16.761(4) \AA$, $c=16.951(4) \AA, \quad \alpha=91.443(19)^{\circ}, \quad \beta=94.078(17)^{\circ}, \quad \gamma=113.893(15)^{\circ}, \quad V=3754.8(15) \AA^{3}$, $Z=2, \quad \rho_{\text {calcd }}=1.538 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \quad \mu=3.797 \mathrm{~mm}^{-1}, \quad F(000)=1742, \quad T=100(2) \mathrm{K}, \quad R_{l}=0.0229$, $w R_{2}=0.0468,14339$ independent reflections $\left[2 \theta \leq 51.506^{\circ}\right]$ and 887 parameters.

Figure S59. Solid-state structures of 1-CNMes*. Thermal displacement ellipsoids at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 1-DMAP: The asymmetric unit contains 4.5 benzene molecules, one of which was modelled as twofold disordered (RESI 15 and 115) in a $61: 39$ ratio. ADPs within the disorder were restrained with SIMU and ISOR 0.01 and the rings idealised with AFIX 66.

Crystal data for 1-DMAP: $\left.\mathrm{C}_{59} \mathrm{H}_{58} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{P}{ }_{4} \mathrm{~W} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right)_{4.5}, M_{\mathrm{r}}=1823.56$, yellow plate, $0.24 \times 0.199 \times 0.112 \mathrm{~mm}^{3}$, triclinic space group $P \overline{1}, a=10.363(3) \AA, b=18.694(4) \AA$, $c=21.331(7) \AA, \alpha=104.964(5)^{\circ}, \quad \beta=93.977(8)^{\circ}, \quad \gamma=96.840(7)^{\circ}, \quad V=3942(2) \AA^{3}, \quad Z=2$, $\rho_{\text {calcd }}=1.536 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=3.621 \mathrm{~mm}^{-1}, \quad F(000)=1826, \quad T=100(2) \mathrm{K}, \quad R_{l}=0.0450$, $w R_{2}=0.0848,22202$ independent reflections $\left[2 \theta \leq 59.302^{\circ}\right]$ and 943 parameters.

Figure S60. Solid-state structures of 1-DMAP. Thermal displacement ellipsoids at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 3-DMAP: The unit cell contains highly disordered benzene and hexane molecules which have been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON. ${ }^{11} 781$ electrons were thus squeezed from the unit cell, corresponding to ca. 12 hexane and 4 benzene molecules (768 electrons). After the application of SQUEEZE the absorption correction had to be recomputed. This was done using the Difabs absorption correction function of WinGX. ${ }^{12}$ Three disagreeable reflections (4 15, 7 45,1056) were omitted. The large residual electron density is attributed to the presence of heavy atoms (W and Br). Two phenyl groups were modelled as twofold disordered (RESI 11/111 and 22/122), in a 40:60 and 63:37 ratio, respectively. ADPs within the disorders were restrained with SIMU 0.01 and the rings idealised with AFIX 66.

Crystal data for 3-DMAP: $\mathrm{C}_{59} \mathrm{H}_{58} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{~W} \cdot\left(\right.$ squeezed solvent), $M_{\mathrm{r}}=1472.08$, green plate, $0.199 \times 0.129 \times 0.108 \mathrm{~mm}^{3}$, monoclinic space group $P 2_{1} / c, a=18.893(9) \AA, b=28.420(13) \AA$, $c=25.635(16) \AA, \quad \beta=90.67(3)^{\circ}, \quad V=13764(13) \AA^{3}, \quad Z=8, \quad \rho_{\text {calcd }}=1.421 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, $\mu=4.130 \mathrm{~mm}^{-1}, F(000)=5792, T=100(2) \mathrm{K}, R_{l}=0.0663, w R_{2}=0.1559,28152$ independent reflections $\left[20 \leq 52.744^{\circ}\right]$ and 1357 parameters.

Figure S61. Solid-state structures of 3-DMAP. Thermal displacement ellipsoids at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 2: Two phenyl substituents of the phosphine ligands (RESI 4 and 14, 10 and 110) showed a twofold disorder (both 50:50). The displacement parameters of the carbon atoms (C 1 to C6) were restrained with similarity restraint SIMU 0.01 . Three of the 4.5 solvent molecules in the asymmetric unit (RESI 13 and 113, 15 and 115, 16 and 116) showed a twofold disorder ($60: 40,63: 37$ and 55:45, respectively). The displacement parameters of the carbon atoms (C 1 to C 6) were restrained with similarity restraint SIMU 0.01 and the hexagonal geometry with AFIX 6.

Crystal data for 2: $\mathrm{C}_{104} \mathrm{H}_{96} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{P}_{8} \mathrm{~W}_{2} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) 9, \quad M_{\mathrm{r}}=3061.53$, yellow plate, $0.190 \times 0.069 \times 0.039 \mathrm{~mm}^{3}$, triclinic space group $P \overline{1}, a=14.76174(9) \AA, b=16.09125(10) \AA$, $c=16.44031(12) \AA, \alpha=63.3289(7)^{\circ}, \beta=82.3742(6)^{\circ}, \gamma=80.1777(5)^{\circ}, V=3431.49(5) \AA^{3}$, $Z=1, \rho_{\text {calcd }}=1.482 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=5.709 \mathrm{~mm}^{-1}, F(000)=1544, T=99.99(10) \mathrm{K}, R_{I}=0.0254$, $w R_{2}=0.0659,13521$ independent reflections $\left[2 \theta \leq 144.258^{\circ}\right]$ and 987 parameters.

Figure S62. Solid-state structures of 2. Thermal displacement ellipsoids at 50\%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Table S1. ${ }^{31} \mathrm{P}$ NMR shifts (ppm , at 298 K unless stated otherwise), $\mathrm{N}=\mathrm{N}$ IR stretching frequencies (cm^{-1}), selected bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left(^{\circ}\right)$ for $\mathbf{1 - L}, 2$ and 3-DMAP. Bonding parameters for $\mathbf{2}^{\prime}$ calculated at the B3LYP-D3(BJ)-Def2-SVP-ecp(Br,W) level of theory in square brackets.

Compound	${ }^{31} \mathrm{P}$ NMR	$v(\mathrm{~N}=\mathrm{N})$	W1-N1	N1-N2	N2-B1	B1-B2	B-L	W1-N1-N2	N1-N2-B1	Br2-B1-B2-L
1-SMe 2	33.2	1535	1.788(4)	1.274(5)	1.359(6)	1.690(8)	1.945(5)	172.0(3)	140.8(4)	-47.0(4)
1-PMe3	33.3	1528	$1.798(7)$	1.277(10)	1.447(12)	1.662(14)	$2.049(11)$	174.9(6)	135.4(7)	-24.3(9)
1-PCy ${ }^{\text {a }}$	37.6	1528	1.779(6)	1.255(7)	$1.363(10)$	1.702(11)	-	173.4(4)	141.1(6)	-
1-	34.2	1545	$1.7910(19)$	1.270(3)	1.356(3)	1.707(4)	1.575(4)	172.79(16)	141.3(2)	-27.7(3)
CNMes* ${ }^{\text {b }}$										
1-DMAP	-	-	1.798(3)	1.259(4)	1.372(4)	1.704(5)	1.570(5)	174.0(2)	140.6(3)	50.4(4)
1-CAAC	38.9, 38.4	1536	-	-	-	-	-	-	-	-
1-IiPr	39.1	1550	-	-	-	-	-	-	-	-
3-DMAP ${ }^{\text {c }}$	33.5, $24.1{ }^{\text {d }}$	1564	$1.797(7)$	1.250(10)	1.377(13)	1.701(15)	1.534(12)	172.1(6)	148.0(8)	-
2	34.9	1529	1.7959(19)	1.256(3)	1.370(4)	1.681(5)	-	173.71(17)	124.5(3)	-
			[1.813]	[1.241]	[1.375]	[1.690]		[171.6]	[142.4]	

[^0]
Computational details

Geometry optimisations were carried out at the B3LYP ${ }^{13}$-D3(BJ) ${ }^{14}$-def2-SVP ${ }^{15}$ level of theory using the Turbomole ${ }^{16}$ user interface TmoleX2021. ${ }^{17}$ The def2-ecp ${ }^{18}$ and defpp-ecp basis ${ }^{19}$ sets were applied to the W and Br atoms, respectively, to account for relativistic effects. Due to the large size of the systems calculations were carried out on the simplified models 1-DMAP', 1CAAC' ${ }^{\prime}$ 3-DMAP' and $\mathbf{2}^{\prime}$, in which all P-bound phenyl rings were replaced by methyl groups. The optimised geometries were confirmed as true minima by frequency calculations, which provided no negative frequencies. Molecular orbital representations were generated in TmoleX2021. ${ }^{11}$ B NMR shift calculations were carried out at the B3LYP-D3(BJ)-def2-SVP$\operatorname{ecp}(\mathrm{W}, \mathrm{Br})$ level of theory. When $\mathrm{B}_{2} \mathrm{Br}_{2}\left(\mathrm{NMe}_{2}\right)_{2}\left(\delta_{11 \mathrm{~B}}=38 \mathrm{ppm}\right)$ was used as a reference, the calculated shifts for 1-CAAC' were in good agreement with the experimental solid-state NMR shifts (Table S1).

Figure S63. Simplified models of complexes 1-DMAP, 1-CAAC, 3-DMAP and $\mathbf{2}$ for the DFT calculations.

Table S2. Calculated ${ }^{11}$ B NMR shifts at the B3LYP-D3(BJ)-def2-SVP-ecp(W,Br) level of theory for $\mathbf{1 - C A A C}{ }^{\prime}$ and $\mathrm{B}_{2} \mathrm{Br}_{2}\left(\mathrm{NMe}_{2}\right)_{2}\left(\delta_{11 \mathrm{~B}}=38 \mathrm{ppm}\right)$ as a reference.

	$\mathrm{B}_{2} \mathrm{Br}_{2}\left(\mathrm{NMe}_{2}\right)_{2}$	1-CAAC'	
calc. ${ }^{11} \mathrm{~B}$ NMR shielding (ppm)	66.94092	84.69907	107.6867
calc. ${ }^{11} \mathrm{~B}$ NMR shift (ppm)	38 (reference)	20.24186	-2.74573
exp. ${ }^{11} \mathrm{~B}$ NMR shift (ppm)	38	23.7	-6.2

1-DMAP' (0.0)

HOMO (0.0)

HOMO-1 (-8.7)

HOMO-2 (-10.3)

3-DMAP' (-3.0)

Figure S64. Representation of the frontier molecular orbitals (MOs) of 1-DMAP' and 3DMAP', calculated at the B3LYP-Def2-SVP-D3(BJ)-ecp(Br,W) level of theory. Isovalues 0.04 . Relative energies in parentheses in $\mathrm{kcal} \mathrm{mol}^{-1}$.

Table S3. Optimised geometries of the studied complexes calculated at the B3LYP-D3(BJ)-Def2-SVP-ecp(Br,W) level of theory.

$\begin{aligned} & \text { 1-DMAP' } \\ & \mathrm{E}(\mathrm{scf})=-4104.02304937830 \text { a.u. } \end{aligned}$	$\begin{aligned} & \text { 3-DMAP' } \\ & \text { E(scf) }=-4104.01823441821 \text { a.u. } \end{aligned}$
Br 2.1370896 .0834492 .250512	Br -1.984914 18.3338288 .773154
W 2.399370 4.0702174 .054520	W -0.261094 20.2563787 .883972
N 2.6932892 .7322775 .203605	N 0.64430321 .6338777 .183644
N 3.0914931 .8034085 .936357	N 0.96979722 .7058036 .594745
B 2.5873051 .0641956 .968994	B 2.090626 23.5128696 .697147
Br 0.6022501 .3735727 .500271	N 1.87142024 .8488035 .929682

B	3.4945530	0.002708	7.930829	C	1.285647	24.864895	4.711732
Br	Br 4.361791	1.233109	9.356670	H	0.959374	23.892483	4.342344
Br	Br 4.934822 -	-0.972314	6.818215	C	1.115406	26.021729	3.983420
N	2.665964	-1.137103	8.647642	H	0.648646	25.951559	3.003484
C	2.860656	-1.532444	9.921894	C	1.555658	27.266968	4.514577
H	$3.613625-0$.	-0.967604	10.472748	N	1.416989	28.431906	3.826295
C	$2.151428-$	-2.565830	10.498139	C	0.806639	28.433176	2.507259
H	$2.367726-$	-2.819858	11.533484	H	1.373068	27.808807	1.794365
C	$1.166845-3$.	-3.262859	9.748289	H	0.787569	29.458174	2.118021
C	$0.987647-$	-2.830311	8.405959	H	-0.232342	28.061357	2.537340
H	$0.260190-$	-3.297923	7.746463	C	1.893713	29.678904	4.403071
C	1.738314 -	-1.788926	7.910297	H	1.369931	29.920288	5.344511
H	$1.623931-$	-1.445312	6.883489	H	1.713529	30.496964	3.695657
N	0.438324	-4.281017	10.279942	H	2.976207	29.641346	4.614326
C	0.662105	-4.695910	11.654841	C	2.146124	27.221693	5.805733
H	1.698278	-5.042201	11.813149	H	2.500396	28.121092	6.303886
H	-0.013214	-5.525088	11.897562	C	2.296836	26.019197	6.462100
H	0.463861 -	-3.875266	12.366107	H	2.734349	25.957754	7.458481
C	-0.563102 -	-4.959217	9.473322	B	3.559084	23.322916	7.526316
H	-1.342856	-4.261787	9.121073	Br	r 3.083047	24.004826	9.470421
H	-1.050139-5	-5.733855	10.077250	Br	r 5.105509	24.457190	6.767692
H	-0.115173 -	-5.446604	8.589636	Br	Br 4.173315	21.358448	7.579998
P	1.4206675	5.598588	5.748581	P	-2.081486	20.802832	6.298480
C	-0.437744 5	5.644753	5.530861	C	-3.121877	22.185623	7.032624
H	-0.919393 6	6.043395	6.439584	H	-2.592335	23.122709	6.788241
H	-0.630598	6.358448	4.711664	H	-4.107200	22.228689	6.539392
C	-0.973178	4.254125	5.174170	C	-3.255306	22.034206	8.551322
H	-2.050719	4.282677	4.939885	H	-3.838953	21.132524	8.801437
H	-0.829557 3	3.555992	6.015857	H	-3.763967	22.902952	9.002020
P	-0.007489 3	3.517488	3.749461	P	-1.569659	21.786572	9.323618
C	1.6311775	5.059692	7.492618	P	0.882745	18.460875	6.605680
C	1.8628747	7.383109	5.787185	C	1.916099	17.425386	7.771019
C	-0.507635 1.7	1.749503	3.809257	H	1.216950	16.704733	8.228540
C	-0.895925	4.153915	2.268245	H	2.660727	16.846830	7.199273

H	11.297833	9.718258	-0.166207		17.468910 -4	4.1375497	. 150999
H	11.036754	7.990903	0.176009		$\mathrm{Br}_{2}\left(\mathrm{NMe}_{2}\right)_{2}$		
C	8.382646	13.906447	3.272168		cf) $=-5466.06$	06566052776	6 a.u.
H	7.529700	13.631536	2.642502	B	0.307081	-0.173170	-0.125503
C	7.877160	13.909069	4.725476	Br	-1.370885	-0.885391	-0.890323
H	7.046565	14.624186	4.835065	N	0.569705	-0.331155	1.236327
H	8.680500	14.207017	5.419059	B	1.339700	0.546479	-1.265220
H	7.514705	12.919470	5.025064	Br	2.898486	-0.564614	-1.758531
C	8.827690	15.324001	2.875292	N	1.148033	1.784207	-1.881491
H	7.970320	16.014732	2.920355	C	1.984125	2.375432	-2.914045
H	9.249697	15.368320	1.861266	C	0.006149	2.620229	-1.536545
H	9.591266	15.709914	3.569139	C	1.799541	0.183384	1.823409
N	8.103623	11.498199	1.556980	C	-0.271478	-1.014152	2.206204
C	1.700204	6.966816	3.611350	H	0.339898	3.600612	-1.150694
C	0.386218	5.514373	5.749609	H	-0.614861	2.134692	-0.773774
C	6.111775	6.762601	6.118062	H	-0.624716	2.805312	-2.424369
C	5.277611	5.962626	8.776774	H	1.400518	2.535446	-3.838556
C	3.708342	9.397211	10.312535	H	2.367451	3.358640	-2.586679
C	5.504653	10.355212	8.283585	H	2.834227	1.723291	-3.143445
C	-0.749337	9.325039	7.152288	H	-1.188207	-1.381709	1.731765
C	0.922662	10.882421	5.376485	H	-0.545821	-0.331310	3.030345
H	5.870996	6.799872	9.174368	H	0.267340	-1.871560	2.648198
H	5.913672	5.065139	8.718955	H	2.389915	-0.634922	2.273233
H	4.428183	5.781527	9.451807	H	2.420036	0.670645	1.061315
H	0.147216	11.660021	5.466671	H	1.577245	0.915550	2.620912

H	0.710263	10.247293	4.503678	
H	1.906899	11.348949	5.222835	
H	6.178018	9.508080	8.481893	
H	5.650848	10.677437	7.243865	
H	5.756527	11.185344	8.962882	
H	-1.105969	8.782051	6.263731	
H	-1.402801	10.193200	7.334144	
H	-0.779551	8.639256	8.011896	
H	2.675138	9.155412	10.597250	
H	4.088508	10.234758	10.918417	
H	4.314945	8.498661	10.496236	
H	5.829051	6.963121	5.073875	
H	6.816365	5.917260	6.159114	
H	6.610164	7.677255	6.472743	
H	-0.448177	6.231169	5.779101	
H	0.176273	4.727768	5.007923	
H	0.481623	5.079759	6.754807	
H	1.513413	6.116515	2.936229	
H	0.852717	7.666544	3.560971	
H	2.610564	7.500461	3.297093	

References

1 J. Rohonczy, SOLA - Solid Lineshape Analysis Version 2.2.4, Bruker Biospin, Rheinstetten, Germany, 2013.

2 A. Rempel, S. K. Mellerup, F. Fantuzzi, A. Herzog, A. Deißenberger, R. Bertermann, B. Engels and H. Braunschweig, Chem. Eur. J., 2020, 26, 16019.

3 J. R. Dilworth and R. L. Richards, Inorg. Synth., 1990, 28, 33.
4 V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu and G. Bertrand, Angew. Chem. Int. Ed., 2005, 44, 5705.
5 M. Niehues, G. Erker, G. Kehr, P. Schwab, R. Froehlich, O. Blacque and H. Berke, Organometallics, 2002, 21, 2905.

6 W. Wolfsberger, H. Schmidbaur, Synth. React. Inorg. Met.-Org. Chem. 1974, 4, 149.
7 K. Issleb, A. Brack, Z. anorg. allg. Chem., 1954, 277, 258.
8 C. W. Tate, R. Shang, K. Radacki and H. Braunschweig, Angew. Chem. Int. Ed., 2013, 52, 729.

9 G. Sheldrick, Acta Cryst., 2015, A71, 3.
10 G. Sheldrick, Acta Cryst., 2008, A64, 112.
11 A. L. Spek, Acta Cryst., 2015, C71, 9.
12 L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849.
13 a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785; c) S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200; d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.

14 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
15 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
16 TURBOMOLE V7.0, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007; TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.TmoleX2021.

17 TmoleX2021, Dassault Systèmes, Versailles.
18 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Theor. Chim. Acta, 1990, 77, 123.

19 S. Grimme and M. Waletzke, J. Chem. Phys., 1999, 111, 5645.
20 A. Moezzi, M. M. Olmstead and P. P. Power, J. Chem. Soc., Dalton Trans., 1992, 2429.

[^0]: ${ }^{\text {a }}$ Although crystals of $\mathbf{1 - P C y} 3$ were obtained these always showed partial oxidation to $\mathbf{1 - O P C y} 3$ (up to 30%), the structures of the two fully overlapping in the asymmetric unit, with the exception of the $\mathrm{PCy}_{3} / \mathrm{OPCy}_{3}$ ligand, thus precluding discussion of $\mathrm{B}-\mathrm{L}$ bonding parameters. ${ }^{\text {b }}$ First of the three molecules of 1-CNMes* present in the asymmetric unit. ${ }^{\text {c }}$ First of the two molecules of 3-DMAP present in the asymmetric unit. ${ }^{d}$ At 223 K.

