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Materials 

Sodium molybdate dihydrate [(NH4)6Mo7O24·4H2O, AR], cobalt nitrate hexahydrate [Co(NO3)2·6H2O, AR], 
urea [CO(NH2)2, AR], nickel nitrate hexahydrate [Ni(NO3)2·6H2O, AR], iron nitrate nonahydrate [Fe(NO3)3·9H2O]. 
The above materials were purchased from Aladdin Reagent (Shanghai) Co., Ltd.

Synthesis of NiFe-LDH@NF

NF (2*3cm) was prepared by the above method. NiFe-LDH@NF was prepared by electrodeposition for 300 s 
under the above experimental conditions.

Synthesis of RuO2 electrodes

After strong ultrasonication for 30 min, 40 mg RuO2 was uniformly disseminated in a mixture of 50 μL Nafion 
solution and 1mL mixed solution of ethanol and water to make a homogeneous ink. The catalyst ink was then 
dropped over the cleaned NF (1*1.5 cm), which was then dried for 12 h at 60 °C in a vacuum oven, producing 
RuO2/NF electrodes.

Synthesis of Powder-CoMoO4/NiFe-LDH/NF and Powder-NiFe-LDH/NF

Powder of CoMoO4/NiFe-LDH and NiFe-LDH were scraped from CoMoO4/NiFe-LDH@NF and NiFe-LDH@NF 
electrodes, respectively, and then Powder-CoMoO4/NiFe-LDH/NF and Powder-NiFe-LDH/NF electrodes were 
prepared according to the method of RuO2 electrodes.

Physicochemical Characterization

The morphology was obtained by scanning electron microscopy (SEM, Sirion) and transmission electron 
microscopy (TEM, Talos F200X). X-ray diffraction (XRD) patterns were obtained via an Ultima IV X-ray 
diffractometer utilizing Cu Kα1 radiation (λ =1.5406 Å) at a scanning speed of 0.02 steps per second. X-ray 
photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi) was utilized to obtain data on components in 
synthetic materials.

Electrochemical measurements

The electrochemical measurements were carried out utilizing a typical three-electrode system on a CHI-
660D electrochemical workstation (CHI Instrument, Shanghai, China). The electrolyte used was 1 M KOH (pH 
≈14.0), and the experiment was conducted at room temperature in an air atmosphere. The working electrode 
was made up of a self-supported NF electrocatalyst, while the counter electrode and reference electrode were 
made up of Pt and Ag/AgCl. The formula: E(vs RHE) = E(vs Ag/AgCl) + 0.097 + 0.0591 pH was utilized to change 
the tested potentials to reversible hydrogen electrodes (RHEs). A scan rate of 5 mV·s−1 and 90% iR-compensation 
were applied for linear sweep voltammetry (LSV) curves. Electrochemical impedance spectroscopy (EIS) studies 
were performed in the 100,000-0.01 Hz frequency range (versus Ag/AgCl). The OER was tested for stability using 
the chronoamperometry method for 20 h at a voltage of 1.46 V (vs. RHE). Electrochemical surface areas (ECSAs) 
were acquired on the basis of the following formula: ECSAs = Cdl/Cs. Here, Cdl represented the double-layer 
capacitance acquired from CV cycles.



Fig. S1. The photographic images of CoMoO4@NF and CoMoO4/NiFe-LDH@NF.



 

Fig. S2 (a, b). SEM images of CoMoO4@NF.



Fig. S3 (a). SEM images of CoMoO4-150/NiFe-LDH@NF and (b). CoMoO4-450/NiFe-LDH@NF.



Fig. S4. EDS elemental mapping images of Co, Mo, O, Fe and Ni in CoMoO4-300/NiFe-LDH@NF. 



Fig. S5. HAADF-STEM and EDX elemental mapping images of Co, Mo, and O in CoMoO4.



Fig. S6. EIS Nyquist plots and fitting curves of CoMoO4/NiFe-LDH@NF.



Fig. S7. (a) OER polarization curves with 90% iR compensation for NF, Powder-CoMoO4/NiFe-LDH Powder-

NiFe-LDH/NF, and CoMoO4/NiFe-LDH@NF. (b) Tafel plots and (c). Cdl values of Powder-CoMoO4/NiFe-LDH 

Powder-NiFe-LDH/NF and CoMoO4/NiFe-LDH@NF.
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Fig. S8. XRD patterns of CoMoO4/NiFe-LDH@NF and CoMoO4/NiFe-LDH@NF after 20 h stability test.



Fig. S9. SEM image of CoMoO4/NiFe-LDH@NF after 20 h stability test.



   

Fig. S10. (a, b) TEM and (c) HR-TEM image of CoMoO4/NiFe-LDH@NF after 20 h stability test.



Fig. S11. HAADF-STEM and EDX elemental mapping images of Co, Mo, O, Ni and Fe in CoMoO4/NiFe-LDH after 

20h stability test.



Fig. S12. (a-d) High-resolution XPS spectra of Fe, Co, Mo, and Ni after 20 h stability test.
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Fig. S13. High-resolution XPS spectra of Mo in the CoMoO4/NiFe-LDH@NF and CoMoO4/@NF after 20h 

stability test. 



Fig. S14. I-t curves of CoMoO4/NiFe-LDH@NF at different current densities.



 

Fig. S15. CV curves of (a). CoMoO4/NiFe-LDH@NF, (b). CoMoO4@NF, and (c). NiFe-LDH@NF.



Table. S1. Fe content change of 1. CoMoO4-150/NiFe-LDH@NF, 2. CoMoO4-300/NiFe-LDH@NF, 3. CoMoO4-

450/NiFe-LDH@NF, and 4. CoMoO4-600/NiFe-LDH@NF

Element
1. Atomic 
percentage

2. Atomic 
percentage

3. Atomic 
percentage

4. Atomic 
percentage

O 65.89 63.78 61.94 59.86

Fe 0.86 1.23 1.75 2.37

Co 6.94 7.56 8.19 9.03

Ni 11.32 13.43 15.02 15.81

Mo 14.99 14.00 13.10 12.93



Table. S2. OER activity comparison of different electrocatalysts.

Catalysts Current density (mA 

cm-2)

Overpotential (mV) Ref.

CoMoO4/NiFe-LDH@NF 10 180 This 

work

NiFe-LDH/NiCo2O4 50 290 1

NiFe-LDH@CoSx 10 206 2

NF@NiFe-LDH-1.5-4 100 190 3

NiFe-60/Co3O4@NF 100 221 4

Co9S8@NiFe-LDH 50 287 5

NiFe-LDHs/Ni(OH)2 50 292 6

NiFe-LDH-Ti4O7 10 200 7

FeNi2S4@NiFe-LDH 100 238 8

V-NiFe LDH@Ni3S2 10 178 9

NiMoP@NiFe-LDH 150 299 10



S-NiMoO4@NiFe-LDH/NF 100 273 11

MIL-101@NiFe-LDH 10 215 12

NiFe‑LDH@Co(OH)2 10 130 13

v-NiFe LDH microtubes 10 195 14

Fe0.5Co0.5MoO4-xSx 10 263 15

CoMoO4@CoNiO2 10 180 16

CoMoO4 nanotubes 10 315 17

A-CoMoO4 10 264 18

Co3Mo/CoMoOx 10 256 19

F-CoMoO4−x-2@GF 10 256 20
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