Supporting Information

Tuning of thermal quenching performance of Bi³⁺-doped scheelite Ca(Mo/W)O₄ solid solution phosphors

Ran Xiao,^a Ning Guo,^{a,*} Xiang Lv,^a Qincan Ma,^a Baiqi Shao,^b and Ruizhuo Ouyang,^a

^a Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P.

R. China.

^b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

*Corresponding author: Tel.: +86-21-65711344; Fax: +86-21-65711344;

E-mail: guoning@usst.edu.cn

Figure S1

Figure S1 Rietveld refinement patterns for X-ray diffraction patterns of (a)Ca0.99Mo_{0.5}W_{0.5}O₄:0.01Bi³⁺

(b)Ca_{0.99}WO₄:0.01Bi³⁺.

Figure S2 Emission spectra of (a, c) $Ca_{0.99}Mo_{0.75}W_{0.25}O_4:0.01Bi^{3+}$ (b, d) $Ca_{0.99}Mo_{0.25}W_{0.75}O_4:0.01Bi^{3+}$ at 303-423K.

Figure S3 Normalized integrated intensity of Ca_{0.99}Mo_{1-x}WxO₄:0.01Bi³⁺ (x=0-1) at 303-523K

Fig. S4 (a) Emission spectra of $Ca_{0.99}Mo_{0.5}W_{0.5}O_4:0.01Bi^{3+}$ solid solution on heating and cooling at 303-523K. (b) The fitting curve of the corresponding integrated intensity.

Figure S5 (a-e) $Ca_{0.99}Mo_{1-x}W_xO_4:0.01Bi^{3+}$ (x=0, 0.25, 0.5, 0.75, 1) in variable temperature chromaticity coordinates (x, y), and the insets are the corresponding CIE chromaticity diagrams.

Figure S6

Figure S6 Schematic of the quenching mechanism for the Bi³⁺ activator and the MPD quenching for Eu³⁺.

Figure S7 The temperature resolution of $Ca_{0.985}Mo_{0.5}W_{0.5}O_4: 0.01Bi^{3+}, 0.0025Eu^{3+}.$

Parameter	$Ca_{0.99}MoO_4:0.01Bi^{3+}$	$Ca_{0.99}Mo_{0.5}W_{0.5}O_4{:}0.01Bi^{3+}$	$Ca_{0.99}WO_4:0.01Bi^{3+}$	
Space group	$I4_1/a$	$I4_1/a$	$I4_1/a$	
a=b (Å)	5.22294	5.24020	5.24801	
c (Å)	11.43149	11.42373	11.38946	
$\alpha = \beta = \gamma (deg)$	90.000	90.000	90.000	
Unit cell volume $(Å^3)$	311.841	313.692	313.684	
$R_p(\%)$	4.99	5.58	5.39	
R_{wp} (%)	6.79	6.70	7.80	
χ^2	3.77	6.07	4.83	

 Table S1
 The relevant Rietveld refinement parameters and crystallo-graphic data.

Table S2 Several dual rare-earth doped optical temperature measurement materials ofSa and Sr for typical temperature sensors.

Sensing materials	Excitation wavelength(nm)	Temperature range(K)	$S_{r}(\%K^{-1})$	Sa (K ⁻¹)	Ref.
SrY ₂ O ₄ :Bi ³⁺ ,Eu ³⁺	330	313-563	0.86	0.0433	1
CaYZr ₂ Al ₃ O ₁₂ :Bi ³⁺ ,Eu ³⁺	278	297-573	0.664	0.00826	2
LaScO ₃ :Bi ³⁺ ,Eu ³⁺	308	280-480	0.795	0.118	3
$NaGd(MoO_4)_2$: Tb^{3+} , Pr^{3+}	310	303-483	2.05	0.097	4
LuNbO ₄ : Tb ³⁺ ,Pr ³⁺	305	283-493	1.26	0.024	5
NaGdF ₄ :Yb ³⁺ ,Er ³⁺	980	303-343	1.29	0.0365	6
GdNbO ₄ :Bi ³⁺ ,Eu ³⁺	308	303-523	3.81	0.0367	7
$Ca_{0.985}Mo_{0.5}W_{0.5}O_4$: Bi^{3+} , Eu^{3+}	265	303-523	3.1713	0.06553	This work

Reference

- 1. R. Wei, J. Guo, K. Li, L. Yang, X. Tian, X. Li, F. Hu and H. Guo, Dual-emitting SrY₂O₄:Bi³⁺,Eu³⁺ phosphor for ratiometric temperature sensing, *Journal of Luminescence*, 2019, **216**, 116737.
- Z. Zheng, J. Zhang, X. Liu, R. Wei, F. Hu and H. Guo, Luminescence and self-referenced optical temperature sensing performance in Ca₂YZr₂Al₃O₁₂:Bi³⁺,Eu³⁺ phosphors, *Ceramics International*, 2020, 46, 6154-6159.
- 3. D. Huang, Y. Wei, P. Dang, X. Xiao, H. Lian and J. Lin, Tunable color emission in LaScO₃:Bi³⁺,Tb³⁺,Eu³⁺ phosphor, *Journal of the American Ceramic Society*, 2020, **103**, 3273-3285.
- 4. Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu and Y. Wang, A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States, *Advanced Functional Materials*, 2016, **26**, 3139-3145.
- 5. Y. Wu, H. Suo, X. Zhao, Z. Zhou and C. Guo, Self-calibrated optical thermometer LuNbO₄:Pr³⁺/Tb³⁺ based on intervalence charge transfer transitions, *Inorganic Chemistry Frontiers*, 2018, **5**, 2456-2461.
- J. Wang, H. Lin, Y. Cheng, X. Cui, Y. Gao, Z. Ji, J. Xu and Y. Wang, A novel high-sensitive upconversion thermometry strategy: Utilizing synergistic effect of dual-wavelength lasers excitation to manipulate electron thermal distribution, *Sensors and Actuators B-Chemical*, 2019, 278, 165-171.
- J. Xue, H. M. Noh, B. C. Choi, S. H. Park, J. H. Kim, J. H. Jeong and P. Du, Dual-functional of non-contact thermometry and field emission displays via efficient Bi³⁺ -> Eu³⁺ energy transfer in emitting-color tunable GdNbO₄ phosphors, *Chemical Engineering Journal*, 2020, **382**, 122861.