## Supporting information

## Capacity enhanced and kinetic expedited zincion storage ability in Zn<sub>3</sub>V<sub>3</sub>O<sub>8</sub>/VO<sub>2</sub> cathode enabled by heterostructure design

Linyu Yang <sup>a, b\*</sup>, Jikang Jian <sup>c\*</sup>, Shuying wang <sup>a, b\*</sup>, Shiyu Wang <sup>c</sup>, Ablat Abliz <sup>a, b</sup>, Fengjun Zhao <sup>d</sup>, Haibing Li <sup>e</sup>, Jiadong Wu <sup>a, b</sup>, Yujian Wang <sup>a, b</sup>

<sup>a</sup> Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University,

Urumqi 830046, PR China. E-mail: yanglinyu0222@sina.com

<sup>b</sup> School of physics and technology, Xin Jiang University, Urumqi, Xinjiang 830046, China.

<sup>c</sup> School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P.R. China.

<sup>d</sup> School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China

<sup>e</sup> Xinjiang Uygur Autonomous Region Research Institute of Measurement and Testing,
 Urumqi 830011, China

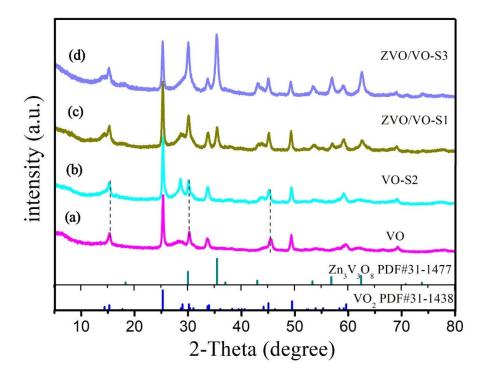



Figure S1. XRD pattern of (a)VO, (b) VO-S2, (c) ZVO/VO-S1, (d) ZVO/VO-S3.

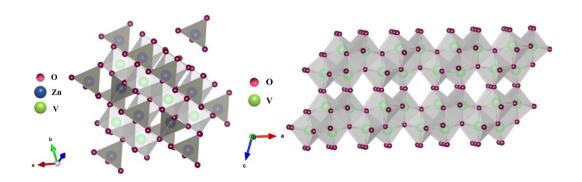



Figure S2. The crystal structure of (a) ZVO, and (b) VO.

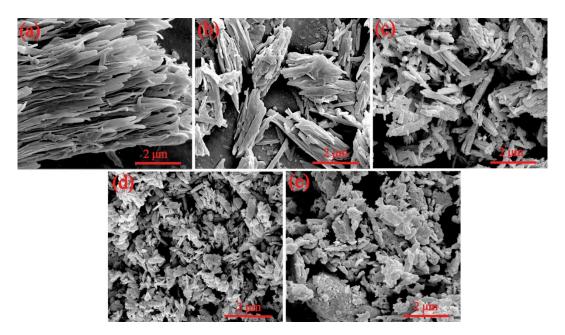



Figure S3. SEM images of (a)VO, (b) VO-S2, (c) ZVO/VO-S1, (d) ZVO/VO-S3 and

(e) ZVO.

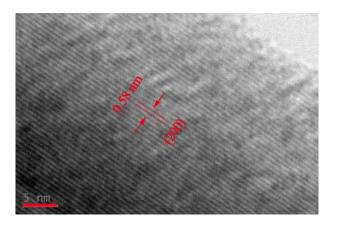



Figure S4. HRTEM of VO.

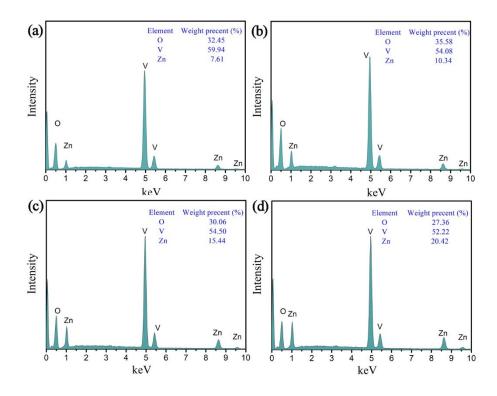



Figure S5. EDS of (a) VO-S2, (c) ZVO/VO-S1, (c) ZVO/VO-S2 and (d) ZVO/VO-

S3.

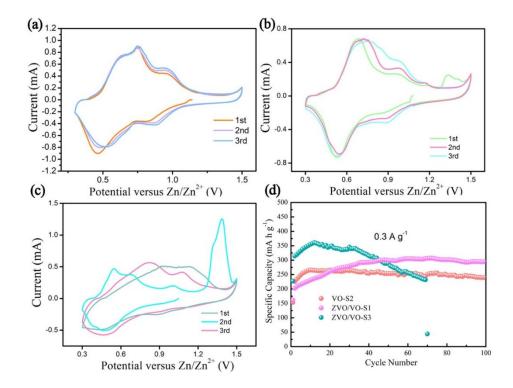
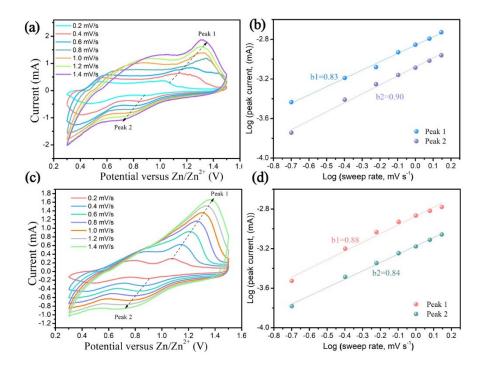
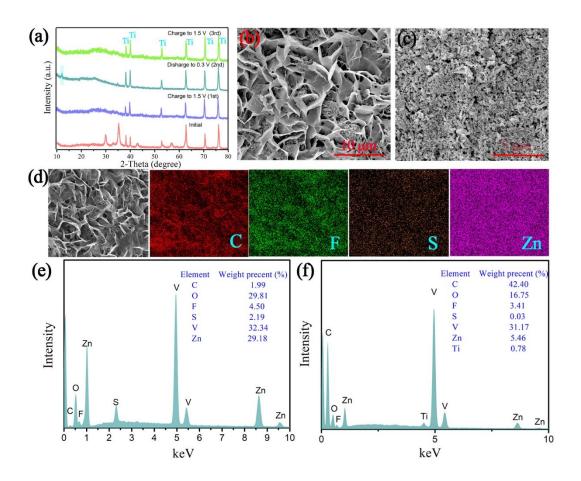




Figure S6. CV curves of (a) VO-S2, (b)ZVO/VO-S1, and (c) ZVO/VO-S3, (d) Cycling


performance of VO-S2, ZVO/VO-S1, and ZVO/VO-S3 at 0.3 A g<sup>-1</sup>.



**Figure S7.** (a) CV profiles of the VO electrode from 0.2 to 1.4 mV s<sup>-1</sup>, (b) *b* values calculated by the reduction and oxidation peaks in the CV curves at different scan rates, (c) CV profiles of the ZVO electrode from 0.2 to 1.4 mV s<sup>-1</sup>, (d) *b* values calculated by the reduction and oxidation peaks in the CV curves at different scan rates.

| Cathode<br>materials                                                        | The range of voltage | Capacity                                                    | Retention/cy<br>cles                                  | Publish<br>date |
|-----------------------------------------------------------------------------|----------------------|-------------------------------------------------------------|-------------------------------------------------------|-----------------|
|                                                                             |                      |                                                             |                                                       |                 |
|                                                                             | ZVO/VO               | 0.3-1.5                                                     | 328.4mA h g <sup>-1</sup> (at 0.3 A g <sup>-1</sup> ) | 92.1%/200       |
|                                                                             |                      | 198.4 mA h g <sup>-1</sup> (at 3 A g <sup>-1</sup> )        | 90.5%/1000                                            |                 |
| Zn <sub>3</sub> V <sub>3</sub> O <sub>8</sub> <sup>[1]</sup>                | 0.2-1.6              | 261.7 mA h g <sup>-1</sup> (at 0.15 A g <sup>-1</sup> )     | 78.3%/60                                              | 2021            |
|                                                                             |                      | 192 mA h g <sup>-1</sup> (at 5 A g <sup>-1</sup> )          | 72.6%/2000                                            |                 |
| Zn <sub>3</sub> V <sub>3</sub> O <sub>8</sub> <sup>[2]</sup>                | 0.2-1.7              | 272 mA h g <sup>-1</sup> (at 0.5 Ag <sup>-1</sup> )         | 73.8%/400                                             | 2021            |
|                                                                             |                      | 170 mA h g <sup>-1</sup> (at 2 A g <sup>-1</sup> )          | 74.6%1200                                             |                 |
| VO <sub>2</sub> <sup>[3]</sup>                                              | 0.2-1.4              | Above 250 mA h g <sup>-1</sup> (at 0.05 A g <sup>-1</sup> ) | 85%/100                                               | 2019            |
|                                                                             |                      | About 100 mA h g <sup>-1</sup> (at 3 A g <sup>-1</sup> )    | 86%/5000                                              |                 |
| VO <sub>2</sub> -rG <sup>[4]</sup>                                          | 0.2-1.6              | 466 mA h g <sup>-1</sup> (0.1 A g <sup>-1</sup> )           | 94.3%/50                                              | 2020            |
|                                                                             |                      | 267 mA h g <sup>-1</sup> (at 10 A g <sup>-1</sup> )         | 100%/5000                                             |                 |
| V <sub>3</sub> O <sub>7</sub> /V <sub>2</sub> O <sub>5</sub> <sup>[5]</sup> | 0.2-1.6              | 225 mA h g <sup>-1</sup> (at 2 A g <sup>-1</sup> )          | 96.2%/1120                                            | 2020            |
|                                                                             |                      | 176 mA h g <sup>-1</sup> (at 5 A g <sup>-1</sup> )          | 82.6%/6500                                            |                 |
| NaV <sub>6</sub> O <sub>15</sub>                                            | 0.2-1.8              | 390 mA h g <sup>-1</sup> (at 0.3 A g <sup>-1</sup> )        | 82.8%/150                                             | 2021            |
| /V <sub>2</sub> O <sub>5</sub> <sup>[6]</sup>                               |                      | 267 mA h g <sup>-1</sup> (at 5 A g <sup>-1</sup> )          | 92.3%/3000                                            |                 |

Table S1. The electrochemical properties comparison between ZVO/VO and other reports.



**Figure S8.** (a) Ex-situ XRD of the of ZVO electrode at different discharge/charge state, (b) and (c) SEM image of ZVO electrode discharged to 0.3 V and charged to 1.5 V, respectively. (d) EDS mapping of ZVO electrode discharged to 0.3 V, (e) and (f) EDS results of ZVO electrode discharged to 0.3 V and charged to 1.5 V, respectively.

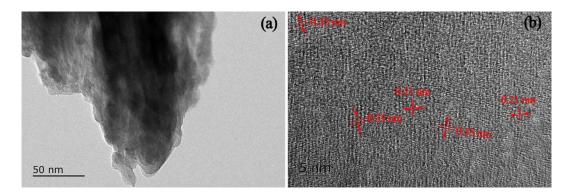
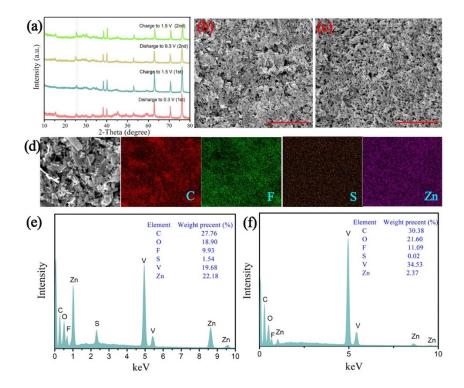




Figure S9. (a) Ex-situ TEM and (b) HRTEM images of ZVO electrode charged to 1.5 V.



**Figure S10.** (a) Ex-situ XRD of the of VO electrode at different discharge/charge state, (b) and (c) SEM image of VO electrode discharged to 0.3 V and charged to 1.5 V, respectively. (d) EDS mapping of VO electrode discharged to 0.3 V, (e) and (f) EDS results of VO electrode discharged to 0.3 V and charged to 1.5 V, respectively.

 $Zn^{2+}$  diffusion coefficients ( $D_H$ ) for VO, ZVO/VO-S1, and ZVO were measured by the GITT method, as present in Figs. 4(d-f). And the galvanostatic charge/discharge pulses were each 5 min at 200 mA  $g^{-1}$ , and the relaxation time was 30 min. The  $Zn^{2+}$  diffusion coefficient can be calculated from equation as follows:

$$D_{H} = \frac{4}{\pi\tau} \times \left(\frac{m_{B} \times V_{M}}{M_{B} \times S}\right)^{2} \times \left(\frac{\Delta E_{S}}{\Delta E_{t}}\right)^{2}, \tag{S1}$$

where  $\tau$  is the charge/discharge time,  $V_{\rm m}$  is the molar volume of active substance,  $m_{\rm B}$  is the practical mass of active substance in one electrode piece,  $M_{\rm B}$  is the relative molecular mass of VO, ZVO/VO-S1, and ZVO, S is the area of the pole piece,  $\Delta E_{\rm s}$ represents the change in steady state voltage during a constant current pulse, and  $\Delta E_{\rm t}$ represents the change in the total voltage during a constant current pulse.

## Reference

- J. Wu, Q. Kuang, K. Zhang, J. Feng, C. Huang, J. Li, Q. Fan, Y. Dong and Y. Zhao, *Energy Storage Mater.*, 2021, 41, 297–309
- 2 H. Yi, C. Zuo, H. Ren, W. Zhao, Y. Wang, S. Ding, Y. Li, R. Qin, L. Zhou, L.
   Yao, S. Li, Q. Zhao and F. Pan, *Nanoscale*, 2021, 13, 14408
- 3 L. N. Chen, Y. S. Ruan, G. B. Zhang, Q. L. Wei, Y. L. Jiang, T. F. Xiong, P. He, W. Yang, M. Y. Yan, Q. Y. An, L. Q. Mai, *Chem. Mater.*, 2019, **31**, 699–706
- 4 H. Luo, B. Wang, F. D. Wu, J. H. Jian, K. Yang, F. Jin, B. Cong, Y. Ning, Y. Zhou,
  D. L. Wang, H. K. Liu, S. X. Dou, *Nano Energy*, 2021, 81, 105601
- 5 H. Z. Chen, L. L. Chen, J. L. Meng, Z. H. Yang, J. Wu, Y. Rong, L. Deng, Y. D. Shi, *J. Power Sources*, 2020, 474, 228569
- L. L. Fan, Z. H. Li, W. M. Kang, B. W. Cheng, J. Energy Chem., 2021, 55, 25– 33