SUPPLEMENTARY INFORMATION

Concerted addition of aldehydes to the

singlet biradical [P(μ -NTer)]₂

Jan Rosenboom, Alexander Villinger, Axel Schulz,* and Jonas Bresien*

This file includes:

1	Experimental	S2
2	Structure elucidation	S4
3	Syntheses of compounds	S8
4	Additional spectroscopic details	S29
5	Computational details	S30
6	References	S67

1 Experimental

General Information. If not stated otherwise, all manipulations were carried out under oxygen- and moisture-free conditions under an inert atmosphere of argon using standard Schlenk or Drybox techniques. All glassware was heated three times *in vacuo* using a heat gun and cooled under argon atmosphere. Solvents were transferred using syringes, which were purged three times with argon prior to use. Solvents and reactants were either obtained from commercial sources or synthesized as detailed in Table S1.

Substance	Origin	Purification
benzene, toluene	local trade	dried over Na/benzophenone freshly distilled prior to use
THF	local trade	dried over Na/benzophenone freshly distilled prior to use
PhCHO	local trade	dried over molecular sieve freshly distilled prior to use
EtCHO	local trade	dried over molecular sieve freshly distilled prior to use
C ₆ H ₄ NO ₂ CHO	old stock	sublimed
C ₆ H ₄ CICHO	old stock	sublimed
C ₆ D ₆	euriso-top	dried over Na freshly distilled prior to use
C7D8	euriso-top	dried over Na freshly distilled prior to use
[P(µ-NTer)] ₂ (1)	synthesized ¹	used as synthesized
KO <i>t</i> Bu	old stock	sublimed

Table S1: Origin and purification of solvents and reactants.

NMR spectra were recorded on Bruker spectrometers AVANCE 250, AVANCE 300 or AVANCE 500 and were referenced internally to the deuterated solvent ($C_6D_6 \delta_{ref.} =$ 128.06 ppm, $\delta_{ref.,2} = 67.21$ ppm, toluene- $d_8 \delta_{ref.,1} = 20.40$ ppm, $\delta_{ref.,2} = 125.49$ ppm), to protic impurities in the deuterated solvent (¹H: $C_6HD_5 \delta_{ref.} = 7.16$ ppm, $\delta_{ref.,2} = 3.58$ ppm, toluene- $d_7 \delta_{ref,1} = 2.09$ ppm, $\delta_{ref,2} = 6.98$ ppm)² or externally (³¹P: 85% H₃PO₄ $\delta_{ref.} =$ 0 ppm). All measurements were carried out at ambient temperature unless denoted otherwise. NMR signals were assigned using experimental data (e.g. chemical shifts, coupling constants, integrals where applicable).

IR spectra of crystalline samples were recorded on a Bruker Alpha II FT-IR spectrometer equipped with an ATR unit at ambient temperature under argon atmosphere. Relative intensities are reported according to the following intervals: very weak (vw, 0–10%), weak (w, 10–30%), medium (m, 30–60%), strong (s, 60–90%), very strong (vs, 90–100%).

Raman spectra of crystalline samples were recorded using a LabRAM HR 800 Horiba Jobin YVON Raman spectrometer equipped with an Olympus BX41 microscope with variable lenses. The samples were excited by a red laser (633 nm, 17 mW, air-cooled HeNe laser). All measurements were carried out at ambient temperature unless stated otherwise.

Elemental analyses were obtained using an Elementar vario Micro cube CHNS analyser.

Melting points (uncorrected) were determined using a Stanford Research Systems EZ Melt at a heating rate of 20 °C/min. Clearing points are reported.

Mass spectra were recorded on a Thermo Electron MAT 95-XP sector field mass spectrometer using crystalline samples.

2 Structure elucidation

X-ray Structure Determination: X-ray quality crystals were selected in Fomblin YR-1800 perfluoroether (Alfa Aesar) at ambient temperature. The samples were cooled to 123(2) K during measurement. The data were collected on a Bruker D8 Quest diffractometer or a Bruker Kappa Apex II diffractometer using Mo K_{α} radiation ($\lambda = 0.71073$ Å). The structures were solved by iterative methods (SHELXT)³ and refined by full matrix least squares procedures (SHELXL).⁴ Semi-empirical absorption corrections were applied (SADABS).⁵ All non-hydrogen atoms were refined anisotropically, hydrogen atoms were included in the refinement at calculated positions using a riding model.

Compound	2 · 0.5 C ₆ H ₆	3 ⋅ 0.5 C ₇ H ₈	4	
Chem. Formula	C ₅₅ H ₅₆ N ₂ OP ₂ · 0.5 C ₆ H ₆	$C_{55}H_{55}N_3O_3P_2 \cdot 0.5(C_7H_8)$	C ₅₅ H ₅₅ CIN ₂ OP ₂	
Formula weight [g/mol]	862.01	914.02	857.40	
Colour	colourless	yellow	colourless	
Crystal system	monoclinic	triclinic	monoclinic	
Space group	P2 ₁ /c	PĪ	P2 ₁ /n	
a [Å]	11.8530(5)	12.0792(9)	12.060(3)	
<i>b</i> [Å]	24.4713(9)	16.788(1)	24.498(6)	
c [Å]	16.8584(6)	27.116(2)	16.669(4)	
α [°]	90	73.506(2)	90	
β [°]	108.606(2)	78.572(2)	110.821(5)	
γ [°]	90	70.114(2)	90	
<i>V</i> [Å ³]	4634.3(3)	4926.5(6)	4603(2)	
Z	4	4	4	
$ ho_{calcd.}$ [g/cm ³]	1.235	1.232	1.237	
μ [mm ⁻¹]	0.138	0.137	0.194	
<i>T</i> [K]	123(2)	123(2)	123(2)	
Measured reflections	106140	163409	91246	
Independent reflections	14743	17319	13415	
Reflections with $l > 2\sigma(l)$	10397	13871	9680	
R _{int}	0.0895	0.0705	0.0734	
<i>F</i> (000)	1836	1940	1816	
$R_1(R[F^2>2\sigma(F^2)])$	0.0489	0.0714	0.0487	
w <i>R</i> ₂ (<i>F</i> ²)	0.1299	0.1788	0.1269	
GooF	1.014	1.115	1.016	
No. of Parameters	599	1160	562	
CCDC #	2125924	2125926	2125927	

Table S2: Crystallographic details of $2 \cdot 0.5 C_6 H_{6}$, $3 \cdot 0.5 C_7 H_8$, 4.

Compound	5	6
Chem. Formula	$C_{51}H_{56}N_2OP_2$	$C_{59}H_{65}KN_2O_2P_2$
Formula weight [g/mol]	774.91	935.17
Colour	colourless	colourless
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /c	P2 ₁ /c
<i>a</i> [Å]	11.909(5)	16.750(2)
<i>b</i> [Å]	21.941(9)	17.111(2)
c [Å]	16.937(7)	17.953(2)
α [°]	90	90
β [°]	108.673(9)	94.172(2)
γ [°]	90	90
V [Å ³]	4193(3)	5131.7(9)
Z	4	4
$ ho_{ m calcd.}$ [g/cm ³]	1.228	1.210
μ [mm ⁻¹]	0.144	0.210
<i>T</i> [K]	123(2)	123(2)
Measured reflections	97316	106650
Independent reflections	13359	18574
Reflections with $l > 2\sigma(l)$	10208	13393
R _{int}	0.0581	0.0699
<i>F</i> (000)	1656	1992
$R_1(R[F^2>2\sigma(F^2)])$	0.0464	0.0498
$wR_2(F^2)$	0.1272	0.1290
GooF	1.047	1.032
No. of Parameters	518	610
CCDC #	2125925	2125928

Table S3: Crystallographic details of 5, 6.

	2	3	4	5	6
P–N	1.734(2)-1.776(1)	1.727(4)-1.774(4)	1.739(2)–1.776(2)	1.736(1)-1.770(1)	1.650(1)–1.826(1)
P–C	1.911(2)	1.927(4)	1.916(1)	1.900(2)	1.885(1)
P–O	1.672(1)	1.680(2)	1.673(2)	1.656(1)	1.676(1), 1.670(1) ^[a]
C–O	1.450(2)	1.455(5)	1.455(2)	1.451(2)	1.439(2), 1.465(2) ^[b]
N-P-N	78.81(6), 79.90(6)	79.1(1), 80.1(2)	78.87(6), 79.74(6)	78.79(5), 79.52(5)	102.30(6)
P-N-P	90.88(6), 92.40(6)	90.8(1), 92.7(2)	90.85(6), 92.33(6)	91.57(5), 91.32(5)	115.84(6)
N-P-P-N	132.72(1)	133.5(2)	132.47(9)	131.73(8)	100.04(8)

Table S4: Selected bond lengths [Å], angles and dihedral angles [°] in the solid state.

[a] P–O(*t*Bu), [b] O–C(Me₃)

3 Syntheses of compounds

3.1 $[P(\mu-NTer)]_2 \cdot PhCHO$ (2)

PhCHO (30 mg, 0.28 mmol) is added to a solution of $[P(\mu-NTer)]_2$ (200 mg, 0.28 mmol) in benzene (10 mL) at RT with a microliter syringe, resulting in an immediate colour change from orange to light yellow. The reaction mixture is stirred for further three hours. After the reaction time, all volatile components are removed *in vacuo* $(1 \times 10^{-3} \text{ mbar})$ at 50 °C (water bath). The residue is dissolved in fresh benzene and insoluble solids are removed by filtration over celite. The clear solution is concentrated *in vacuo* $(1 \times 10^{-3} \text{ mbar})$ to incipient crystallization and stored overnight. After removal of the supernatant colourless crystals remain. **Yield:** 193 mg (0.234 mmol, 84 %).

Mp. 138-143 °C. **CHN** calcd. (found) in %: C 80.27 (79.70), H 6.86 (6.56), N 3.40 (3.22). ³¹P{¹H} **NMR** (toluene-*d8*, 121.5 MHz) δ = 178.5 (d, ²J(³¹P, ³¹P) = 15 Hz, 1 P, *P*-CH), 214.9 (d, ²J(³¹P, ³¹P) = 15 Hz, 1 P, *P*-O). ¹H **NMR** (toluene-*d8*, 300.1 MHz): δ = 1.61 (s, 6 H, *o/p*-CH₃), 2.04 (s, 6 H, *o/p*-CH₃), 2.09 (s, 6 H, *o/p*-CH₃), 2.11 (s, 6 H, *o/p*-CH₃), 2.35 (s, 6 H, *o/p*-CH₃), 2.38 (s, 6 H, *o/p*-CH₃), 4.86 (d, ²J (¹H-³¹P) = 11.3 Hz, 1 H, OCH), 6.56-7.06 (14 H (*Ter*), 5 H (*Ph*CHO)). ¹³C{¹H} **NMR** (toluene-*d8*, 75.5 MHz) δ =20.9 (s, *o/p*-CH₃) 21.3 (s, *o/p*-CH₃), 21.4 (s, *o/p*-CH₃), 21.6 (s, *o/p*-CH₃), 120.8 (s, CH (arom.)), 121.2 (s, CH (arom.)), 126.7 (s, CH (arom.)), 127.4 (s, CH (arom.)), 128.1 (s, CH (arom.)), 129.0 (s, CH (arom.)), 129.1 (s, CH (arom.)), 130.2 (s, CH (arom.)), 130.9 (s, CH (arom.)), 131.3 (s, CH (arom.)), 136.8 (s, CH (arom.)), 137.2 (s, CH (arom.)). **IR** (ATR, 32 scans, cm⁻¹): $\tilde{\nu} = 2912$ (m), 2853 (w), 1610 (w), 1581 (w), 1482 (w), 1402 (s), 1375 (m), 1290(w), 1224 (vs), 1148 (m), 1082 (m), 1031 (w), 934 (m), 897 (s), 843 (vs), 791(m), 769 (m), 754 (s), 732 (m), 705 (vs), 690 (s), 658 (m), 567 (m), 478 (m), 462 (m), 439 (s). **Raman** (633 nm, 15 s, 20 scans, cm⁻¹): \tilde{v} =3130 (1), 3083 (1), 3070 (2), 3046 (2), 3008 (2), 2967 (1), 2947 (2), 2918 (5), 2855 (1), 2729 (1), 1703 (1), 1612 (4), 1604 (4), 1581 (2), 1498 (1), 1482 (1), 1438 (2), 1421 (1), 1405 (1), 1383 (2), 1377 (2), 1344 (1), 1303 (8), 1283 (2), 126 (4), 1249 (1), 1238 (1), 1227 (1), 1209 (3), 1188 (1), 1172 (1), 1165 (1), 1159 (1), 1149 (2), 1099 (1), 1090 (1), 1032 (1), 102 (10), 1004 (6), 993 (3), 945 (1), 845 (1), 743 (1), 735 (1), 727 (1), 705 (1), 693 (1), 657 (2), 620 (2), 616 (2), 592 (2), 580 (7), 568 (3), 559 (2), 551 (1), 546 (2), 536 (1), 523 (2), 511 (1), 504 (1), 474 (1), 461 (1), 422 (1), 379 (1), 352 (1), 338 (1), 326 (1), 285 (1), 266 (2), 233 (2), 219 (1), 188 (1), 155 (2). **MS** (CI, pos., isobutane) *m/z*: 823 [MH]⁺, 716 [(TerNP)₂]⁺, 418 [TerNCHPhH]⁺, 330 [TerNH₃]⁺, 107 [PhCHOH]⁺.

Single crystals suitable for X-ray diffraction can be grown from saturated benzene solution at ambient temperature.

Figure S1 continued.

³¹P NMR spectrum

Figure S1 continued.

3.2 $[P(\mu-NTer)]_2 \cdot C_6H_4NO_2CHO$ (3)

p-Nitrobenzaldehyde (42.1 mg, 0.28 mmol) and $[P(\mu-NTer)]_2$ (200 mg, 0.28 mmol) are dissolved in toluene (10 mL) at RT, resulting in a brown solution that is stirred for three hours. After the reaction time, all volatile components are removed *in vacuo* $(1 \times 10^{-3} \text{ mbar})$ at 50 °C (water bath). The residue is dissolved in fresh toluene and insoluble solids are removed by filtration over celite. The clear solution is concentrated *in vacuo* $(1 \times 10^{-3} \text{ mbar})$ to incipient crystallization and stored overnight. Brown crystals can be obtained. **Yield:** 140 mg (0.16 mmol, 57 %).

Mp. 150-155 °C **CHN** calcd. (found) in %: C 76.11 (75.83), H 6.39 (6.56), N 4.84 (4.72). ³¹P{¹H} **NMR** (toluene-*d8*, 121.5 MHz): δ = 180.1 (d, ²J(³¹P, ³¹P) = 17 Hz, 1 P, *P*-CH), 216.6 (d, ²J(³¹P, ³¹P) = 17 Hz, 1 P, *P*-O). ¹H **NMR** (toluene-*d8*, 300.1 MHz): δ = 1.44 (s, 6 H, *o*/*p*-CH₃), 2.00 (s, 6 H, *o*/*p*-CH₃), 2.03 (s, 6 H, *o*/*p*-CH₃), 2.06 (s, 6 H, *o*/*p*-CH₃), 2.34 (s, 6 H, *o*/*p*-CH₃), 2.35 (s, 6 H, *o*/*p*-CH₃), 4.76 (d, ²J(¹H, ³¹P) = 10.7 Hz, 1H, OCHPhNO₂), 6.47-7.03 (14H, Ter, 2H, *Ph*NO₂), 7.90 (s, 1H, *Ph*NO₂), 7.93 (s, 1H, *Ph*NO₂). ¹³C{¹H} **NMR** (toluene-*d8*, 75.5 MHz): δ = 20.9 (s, *o*/*p*-CH₃), 21.2 (s, *o*/*p*-CH₃), 21.4 (s, *o*/*p*-CH₃), 21.5 (s, *o*/*p*-CH₃), 21.8 (s, *o*/*p*-CH₃), 21.9 (s, *o*/*p*-CH₃), 81.5 (dd, ¹J(¹³C, ³¹P) =41.8 Hz, ²J(¹³C, ³¹P) =3.9 Hz, POCHP), 121.7(s, CH (arom.)), 122.2 (s, CH (arom.)), 127.6 (s, CH (arom.)), 127.7 (s, CH (arom.)), 129.3 (s, CH (arom.)), 129.4 (s, CH (arom.)), 129.5 (s, CH (arom.)), 129.7 (s, CH (arom.)), 131.0 (s, CH(arom.)), 131.5 (s, C (arom.)), 138.0 (s, C (arom.)), 137.1 (s, C (arom.)), 137.5 (s, C (arom.)), 137.5 (s, C (arom.)), 138.0 (s, C (arom.)), 138.3 (s, C (arom.)), 139.0 (s, C (arom.)), 139.5 (s, C (arom.)), 146.5 (s, C (arom.)), 147.3 (s, C (arom.)). **IR** (ATR, 32 scans, cm⁻¹): $\tilde{\nu}$ = 2906 (m), 2844 (w), 1601 (w), 1510 (m), 1434 (m), 1397 (s), 1371 (m), 1338 (s), 1264 (m), 1216 (vs), 1079 (m), 1027 (m), 1007 (m), 1138 (m), 982 (m), 933 (s), 92 (m), 892 (s), 847 (vs), 838 (vs), 791 (s), 752 (s), 709 (s), 688 (s), 653 (s), 557 (m), 534 (m), 477 (s), 462 (m), 436 (s), 429 (s). **Raman** (633 nm, 15 s, 20 scans, cm⁻¹): $\tilde{\nu}$ = 3044 (1), 3003 (1), 2918 (1), 2855 (1), 2731 (1), 2675 (1), 2484 (1), 2449 (1), 1593 (10), 1491 (1), 1417 (1), 1375 (1), 1342 (10), 1337 (10), 1302 (2), 1283 (1), 1221 (1), 1206 (5), 1185 (1), 1177 (1), 1158 (1), 1140 (3), 1106 (7), 1014 (1), 935 (1), 836 (1), 827 (2), 804 (1), 723 (1), 709 (1), 654 (2), 623 (1), 593 (1), 578 (1), 567 (1), 554 (1), 542 (1), 534 (1), 475 (1), 461 (2), 418 (1), 336 (1), 317 (1), 292 (1), 229 (1). **MS** (CI, pos., isobutane) *m/z*: 659, 463 [TerNCHPhNO₂H]⁺, 386 [TerNH₂C₄H₉]⁺, 372, 368, 330 [TerNH₃]⁺, 326, 152 [PhNO₂CHOH]⁺.

Single crystals suitable for X-ray diffraction can be grown from saturated toluene solution at ambient temperature.

Figure S2: NMR, IR and Raman spectra of $[P(\mu-NTer)]_2 \cdot C_6H_4NO_2CHO$ (solvent signals indicated by asterisks).

Figure S2 continued.

¹³C NMR spectrum

³¹P {¹H} NMR spectrum

Figure S2 continued.

3.3 $[P(\mu-NTer)]_2 \cdot C_6H_4CICHO$ (4)

p-Chlorobenzaldehyde (39 mg, 0.28 mmol) and $[P(\mu-NTer)]_2$ (200 mg, 0.28 mmol) are dissolved in toluene (10 mL) at RT, resulting in a light green solution that is stirred for three hours. After the reaction time, all volatile components are removed *in vacuo* (1×10⁻³ mbar) at 50 °C (water bath). The residue is dissolved in fresh toluene and insoluble solids are removed by filtration over celite. The clear solution is concentrated *in vacuo* (1×10⁻³ mbar) to incipient crystallization and stored overnight. After removal of the supernatant colourless crystals are obtained. **Yield:** 199 mg (0.23 mmol, 83 %).

Mp. 157-162 °C **CHN** calcd. (found) in %: C 77.04 (76.57), H 6.47 (6.00), N 3.27 (3.07). ³¹P{¹H} **NMR** (C₆D₆, 202.5 MHz): δ = 178.3 (s (br), 1 P, P-CH), 215.4 (s (br), 1 P, P-O). ³¹P{¹H} **NMR** (toluene-*d8*, 121.5 MHz): δ = 178.4 (d, ²J(³¹P, ³¹P) = 16 Hz, 1 P, P-CH), 215.5 (d, ²J(³¹P, ³¹P) = 16 Hz, 1 P, P-O). ¹H **NMR** (C₆D₆, 500.2 MHz): δ = 1.62 (s, 6 H, *o/p*-CH₃), 2.06 (s, 6 H, *o/p*-CH₃), 2.09 (s, 6 H, *o/p*-CH₃), 2.10 (s, 6 H, *o/p*-CH₃), 2.32 (s, 6 H, *o/p*-CH₃), 2.36 (s, 6 H, *o/p*-CH₃) 4.82 (d, ²J(¹H, ³¹P) = 11.1 Hz, 1H, OCHPhCI), 6.59-7.08 (14H, Ter, 4H, *Ph*CI). ¹H **NMR** (toluene-*d8*, 300.1 MHz): δ = 1.57 (s, 6 H, *o/p*-CH₃), 2.02 (s, 6 H, *o/p*-CH₃), 2.05 (s, 6 H, *o/p*-CH₃), 2.08 (s, 6 H, *o/p*-CH₃), 2.34 (s, 6 H, *o/p*-CH₃), 2.36 (s, 6 H, *o/p*-CH₃) 4.74 (d, ²J(¹H, ³¹P) = 11.3 Hz, 1H, OCHPhCI), 6.53-7.06 (14H, Ter, 4H, *Ph*CI). ¹³C{¹H} **NMR** (C₆D₆, 125.8 MHz): δ = 20.7 (s, *p/o*-CH₃), 21.0 (s, *p/o*-CH₃), 21.0 (s, *p/o*-CH₃), 81.1 (dd, ¹J(¹³C, ³¹P) = 41.4 Hz, ²J(¹³C, ³¹P) = 3.7 Hz, POCHP), 121.5 (s, CH (arom.)), 121.8 (s, CH (arom.)), 128.7 (s, CH (arom.)), 129.4 (s, CH (arom.)), 129.5 (s, CH (arom.)), 129.5 (s, CH (arom.)), 131.3 (s, CH (arom.)), 131.7 (s, CH (arom.)), 133.0 (s, C (arom.)), 136.8 (s, *C* (arom.)), 137.0 (s, *C* (arom.)), 137.1 (s (br.), *C* (arom.)), 137.4 (s, *C* (arom.)), 137.5 (s, *C* (arom.)), 137.7 (s, *C* (arom.)), 138.2 (s, *C* (arom.)), 138.9 (s, *C* (arom.)), 139.4, (s, *C* (arom.)), 139.6 (s, *C* (arom.)). **IR** (ATR, 32 scans, cm⁻¹): $\tilde{v} = 2936$ (w), 2908 (w), 2846 (w), 2723 (vw), 1699 (vw), 1605 (w), 1570 (w), 1484 (m), 1397 (s), 1373 (m), 1286 (w), 1264 (w), 1221 (s), 1149 (m), 1079 (s), 1029 (m), 1013 (m), 982 (w), 943 (w), 923 (s), 892 (s), 836 (vs), 791 (m), 752 (s), 732 (s), 701 (w), 688 (m), 670 (s), 660 (s), 625 (w), 592 (m), 567 (m), 542 (m), 493 (m), 481 (s), 436 (s), 423 (m). **Raman** (633 nm, 15 s, 20 scans, cm⁻¹): $\tilde{v} = 3060$ (2), 3046 (2), 3021 (2), 3016 (2), 3010 (2), 2952 (2), 2920 (3), 2859 (2), 2733 (2), 1613 (3), 1595 (3), 1581 (3), 1483 (1), 1440 (1), 1421 (2), 1384 (2), 1304 (4), 1290 (3), 1272 (1), 1205 (3), 1187 (1), 1153 (1),1088 (3), 1005 (1), 945 1), 735 (1), 703 (1), 663 (1), 627 (1), 594 (3), 581 (4), 576 (3), 522 (1), 510 (1), 486 (1), 463 (1), 422 (1), 378 (1), 351 (1), 339 (1), 321 (1), 270 (2), 242 (2). **MS** (CI, pos., isobutane) *m/z*: 893 [M]⁺, 716 [(TerNP)₂]⁺, 452 [TerNCHPhCIH]⁺, 358 [TerNP]⁺, 141 [PhCICHOH]⁺.

Single crystals suitable for X-ray diffraction can be grown from saturated toluene solution at ambient temperature.

Figure S3: NMR, IR and Raman spectra of $[P(\mu-NTer)]_2 \cdot C_6H_4CICHO$ (solvent signals indicated by asterisks).

¹H NMR spectrum

Figure S3 continued.

³¹P NMR spectrum

Figure S3 continued.

3.4 $[P(\mu-NTer)]_2 \cdot EtCHO$ (5)

EtCHO (16 mg, 0.28 mmol) is added to a solution of $[P(\mu-NTer)]_2$ (200 mg, 0.28 mmol) in toluene (10 mL) at RT with a microliter syringe, resulting in an immediate colour change from orange to light yellow. The reaction mixture is stirred for further three hours. After the reaction time, all volatile components are removed *in vacuo* $(1 \times 10^{-3} \text{ mbar})$ at 50 °C (water bath). The residue is dissolved in fresh toluene and insoluble solids are removed by filtration over celite. The clear solution is concentrated *in vacuo* $(1 \times 10^{-3} \text{ mbar})$ to incipient crystallization and stored overnight. After removal of the supernatant colourless crystals remain. **Yield:** 172 mg (0.22 mmol, 79 %).

Mp. 140-145°C **CHN** calcd. (found) in %: C 78.92 (78.52), H 7.15 (6.74), N 3.68 (3.27). ³¹P{¹H} **NMR** (C₆D₆, 121.5 MHz): δ = 176.6 (d, ²J(³¹P, ³¹P) = 13 Hz, 1 P, *P*-CH), 212.1 (d, ²J(³¹P, ³¹P) = 13 Hz, 1 P, *P*-O). ³¹P{¹H} **NMR** (toluene-*d8*, 121.5 MHz): δ = 176.4 (d, ²J(³¹P, ³¹P) = 14 Hz, 1 P, *P*-CH), 211.9 (d, ²J(³¹P, ³¹P) = 14 Hz, 1 P, *P*-O). ¹H **NMR** (C₆D₆, 300.1 MHz): δ = 0.74 (t, ³J(¹H, ¹H) =7.4 Hz, 3H, OCH₂CH₃), 1.10 (m, 1H, OCH₂CH₃), 1.40 (m, 1H, OCH₂CH₃), 1.89 (s, 6 H, *o/p*-CH₃), 1.98 (s, 6 H, *o/p*-CH₃), 2.16 (s, 6 H, *o/p*-CH₃), 2.30 (s, 6 H, *o/p*-CH₃), 2.31 (s, 6 H, *o/p*-CH₃), 2.35 (s, 6 H, *o/p*-CH₃), 3.47 (m, 1H, OCHCH₂), 6.67-6.94 (14 H (*Ter*)). ¹H **NMR** (toluene-*d8*, 300.1 MHz): δ = 0.71 (t, ³J(¹H, ¹H) =7.4 Hz, 3H, OCH₂CH₃), 1.10 (m, 1H, OCH₂CH₃), 1.40 (m, 1H, OCH₂CH₃), 1.84 (s, 6 H, *o/p*-CH₃), 1.92 (s, 6 H, *o/p*-CH₃), 2.11 (s, 6 H, *o/p*-CH₃), 2.24 (s, 6 H, *o/p*-CH₃), 2.30 (s, 6 H, *o/p*-CH₃), 2.35 (s, 6 H, *o/p*-CH₃), 3.40 (m, 1H, OCHCH₂), 6.61-6.89 (14 H (*Ter*)). ¹³C{¹H} **NMR** (C₆D₆, 75.5 MHz): δ = 21.5 (s, *p/o*-CH₃), 21.8 (s, *p/o*-CH₃), 21.9 (s, *p/o*-CH₃), 120.9 (s, *C* (arom.)), 121.4 (s, *C* (arom.)), 129.1 (s, *C* (arom.)), 129.3 (s, *C* (arom.)), 129.6 (s, *C* (arom.)), 131.3 (s, *C* (arom.)), 137.4 (s, *C* (arom.)). **IR** (ATR, 32 scans, cm⁻¹): $\tilde{\nu}$ =2914 (m), 2855 (w), 1610 (w), 1581 (w), 1496 (w), 1482 (w), 1402 (s), 1375 (m), 1268 (w), 1224 (vs), 1148 (m), 1082 (m), 1031 (m), 985 (w), 934 (s), 897 (s), 843 (vs), 806 (m), 794 (m), 769 (m), 754 (s), 732 (s), 705 (vs), 690 (s), 658 (m), 592 (m), 567 (m), 478 (m), 462 (m), 439 (s), 429 (m). **Raman** (633 nm, 15 s, 20 scans, cm⁻¹): $\tilde{\nu}$ =3072 (1), 3041 (1), 2988 (1), 2916 (3), 2856 (1), 2730 (1), 1613 (4), 1582 (3), 1482 (1), 1421 (2), 1379 (2), 1374 (1), 1337 (1), 1305 (8), 1284 (2), 1270 (1), 1257 (1), 1246 (1), 1240 (1), 1188 (1), 1160 (1), 1102 (1), 1092 (2), 1006 (1), 959 (1), 956 (1), 945 (1), 738 (2), 728 (1), 710 (1), 703 (1), 641 (1), 591 (4), 580 (6), 569 (4), 551 (1), 544 (1), 523 (1), 511 (1), 501 (1), 486 (2), 465 (2), 422 (3), 356 (1), 338 (1), 319 (1), 271 (3), 255 (1), 237 (2), 233 (2), 155 (3), 119 (4). **MS** (Cl. pos., isobutane) *m/z*: 831 [MC₄H₉]⁺, 775 [MH]⁺, 716 [(TerNP)₂]⁺, 330 [TerNH₃]⁺.

Single crystals suitable for X-ray diffraction can be grown from saturated toluene solution at ambient temperature.

Figure S4: NMR, IR and Raman spectra of $[P(\mu-NTer)]_2 \cdot EtCHO$ (solvent signals indicated by asterisks). ¹H NMR spectrum

Figure S4 continued.

¹³C NMR spectrum

800 720 640 560 480 400 320 240 160 80 0 -80 -160 -240 -320 -400Chemical Shift (ppm)

Figure S4 continued.

3.5 [TerNP]₂·PhCHO·KOtBu (6)

KOtBu (27 mg, 0.24 mmol) is added to a solution of $[P(\mu-NTer)]_2 \cdot PhCHO$ (200 mg, 0.24 mmol) in toluene (10 mL) at RT. For solubility a few drops of THF are added. The reaction mixture is stirred overnight, its colour starting to change from orange to light orange after about 30 minutes. After the reaction, all volatile components are removed *in vacuo* (1×10⁻³ mbar) at 50 °C (water bath). The residue is dissolved in fresh toluene and insoluble solids are removed by filtration over celite. The clear solution is concentrated *in vacuo* (1×10⁻³ mbar) to incipient crystallization and stored until crystallization. After removal of the supernatant brownish crystals remain. **Yield:** 176 mg (0.188 mmol, 78 %).

Mp. 137-145°C **CHN** calcd. (found) in %: C 75.85 (75.39), H 6.91 (7.11), N 3.00 (2.74). ³¹P{¹H} **NMR** (toluene-*d8*, 202.5 MHz): δ = 148.6 (s, 1 P, P-CH), 183.9 (s, 1 P, P-O). ¹H **NMR** (toluene-*d8*, 500.2 MHz): δ = 0.84 (d, ⁴J (¹H, ³¹P) = 0.6 Hz, 9 H, OC(CH₃)₃), 1.77 (s, 3 H, *o/p*-CH₃), 2.04-2.35 (24 H, *o/p*-CH₃), 2.38 (s, 6 H, *o/p*-CH₃), 2.45 (s, 3 H, *o/p*-CH₃), 6.15 (d, ²J (¹H, ³¹P) = 4.3 Hz, 1H, OCHPh), 6.37 (s, 1H, H (arom.)), 6.51-7.14 (17 H (arom.)). ¹³C{¹H} **NMR** (toluene-*d8*, 125.8 MHz): δ = 21.2 (s, *p/o*-CH₃), 21.3 (s, *p/o*-CH₃), 21.5 (s, *p/o*-CH₃), 22.0 (s, *p/o*-CH₃), 30.9 (s), 31.0 (s), 75.3 (d, *J* = 12.4 Hz), 113.7(s), 125.6 (s), 126.8 (s), 127.7 (s), 128.1 (s, CH), 128.2 (s), 129.8 (*J* = 9.6 Hz), 131.1 (s), 136.5 (s), 136.9 (s), 138.6 (s), 139.5 (s), 140.2 (s), 142.1 (s). **IR** (ATR, 32 scans, cm⁻¹): $\tilde{\nu}$ = 2968 (m), 2914 (m), 2855 (w), 1610 (w), 1579 (w), 1443 (s), 1404 (s), 1377 (m), 1224 (s), 1181 (m), 1146 (m), 1082 (m), 1031 (m), 1014 (m), 932 (s), 897 (s), 845 (vs), 794 (s), 754 (s), 730 (s), 703 (vs), 693 (vs), 658 (m), 567 (m), 478 (s), 462 (s), 439 (s). **Raman** (633 nm, 15 s, 20 scans, cm⁻¹): $\tilde{\nu}$ =3068 (3), 3046 (3), 3006 (3), 2916 4), 2854 (3), 2730 (3), 1611 (5), 1603 (5), 1580 (4), 1481 (3), 1436 (3), 1419 (3), 1376 (3), 1302 (7), 1283 (4), 1208 (4), 1186 (3), 1157 (3), 1146 (3), 1089 (3), 1029 (3), 1002 (6), 943 (3), 843 (2), 786 (2), 734 (2), 725 (2), 703 (2), 657 (3), 619 (3), 614 (3), 589 (3), 578 (7), 566 (4), 521 (3), 509 (2), 460 (2), 419 (2), 324 (2), 282 (2), 267 (3), 235 (3), 218 (3), 152 (3). **MS** (Cl, pos., isobutane) *m/z*: 823 [(TerNP)₂PhCHOH]⁺, 716 [(TerNP)₂]⁺, 687, 540, 506, 484, 432 [TerNPOtBuH]⁺, 418 [TerNCHPhH]⁺, 330 [TerNH₃]⁺, 107 [PhCHOH]⁺.

Single crystals suitable for X-ray diffraction can be grown from saturated toluene solution at ambient temperature.

Figure S5: NMR, IR and Raman spectra of [TerNP]₂·PhCHO·KOtBu (solvent signals indicated by asterisks).

¹H NMR spectrum

Figure S5 continued.

¹³C NMR spectrum

³¹P NMR spectrum

350 300 250 200 150 100 50 Chemical Shift (ppm)

Figure S5 continued.

4 Additional spectroscopic details

4.1 NMR data of compounds 2-5

In the following section, a summary of experimental NMR data of the compounds **2-5** can be found.

	2	3	4	5
¹ H NMR shift (C <i>H</i> O) [ppm]	4.86	4.76	4.74	3.40
coupling constant (C <i>H</i> O) ² J(¹ H, ³¹ P) [Hz]	11.3	10.7	11.3	m
³¹ P NMR shift (<i>P</i> –CH) [ppm]	178.5	180.1	178.4	176.4
³¹ P NMR shift (<i>P</i> –O) [ppm]	214.9	216.6	215.5	211.9

Table S5: ¹H and ³¹P NMR data of 2-5 (solvent toluene-d8).

5 Computational details

5.1 General remarks

Computations were carried out using Gaussian09,⁶ ORCA 5.0.3,^{7–9} as well as NBO 6.0.^{10–13}

DFT structure optimizations using analytic gradients employed the pure exchangecorrelation functional PBE^{14,15} or the hybrid exchange-correlation functional B3LYP¹⁶⁻²¹ (using VWN5¹⁶ for the local correlation term) in conjunction with Grimme's dispersion correction D3(BJ)^{22,23} and the def2-TZVP basis set²⁴ (notation PBE-D3/def2-TZVP or B3LYP-D3/def2-TZVP). The resolution-of-identity (RI) approximation was applied, using Weigend's accurate Coulomb-fitting basis set (W06 or def2/J).²⁵ Numerical integration of the exchange-correlation energy was done on Gaussian's "ultrafine" grid or ORCA's default XC grid ("DefGrid2"). The exact exchange term of the hybrid functional B3LYP was approximated by the Chain Of Spheres approximation (COSX),²⁶ using the default COSX grid ("DefGrid2") for numerical integration. All structures were fully optimized and confirmed as minima or transition states by analytic frequency analyses.

Accurate electronic energies for the optimized structures were computed using single-point DLPNO-CCSD(T)²⁷⁻³⁰ calculations employing the def2-TZVP basis set and def2-TZVP/C correlation fitting basis³¹ (notation: DLPNO-CCSD(T)/def2-TZVP//PBE-D3/def2-TZVP or DLPNO-CCSD(T)/def2-TZVP//B3LYP-D3/def2-TZVP). For all model systems, the "TightPNO" thresholds were applied in the DLPNO approximation (default "NormalPNO" settings otherwise). Thermodynamic quantities at this level of theory were calculated using the DLPNO-CCSD(T) single point energy and the thermal corrections at the PBE-D3/def2-TZVP or B3LYP-D3/def2-TZVP level of theory, respectively. The *T*₁ diagnostic was evaluated in each case to ensure reliable results (empirically, CCSD(T) results are considered reliable if *T*₁ < 0.02).^{32,33}

Ab-initio structure optimizations were performed using ORCA at the CCSD(T)^{34–39}/def2-TZVP level of theory using numerical gradients. All structures were fully optimized and confirmed as minima or transition states by numerical frequency analyses. The *T*₁ diagnostic was evaluated in each case to assess the multireference character of the wavefunction and verify that the single-reference coupled-cluster approach is viable. Improved electronic energies were computed at the DLPNO-CCSD(T)/def2-QZVPP²⁴ level of theory (using the appropriate def2-QZVPP/C correlation fitting basis³¹ and "TightPNO" thresholds as well as the RIJCOSX approximation for the Coulomb and exchange integrals; notation: DLPNO-CCSD(T)/def2-QZVPP// CCSD(T)/def2-TZVP).

Reaction paths were investigated using a combination of relaxed potential energy surface scans, the nudged elastic band (NEB) method,^{40–45} as well as transition state searches using the eigenvector-following method.^{46–49}

Please note that all computations were carried out for single, isolated molecules in the gas phase (ideal gas approximation). There may well be significant differences between gas phase and condensed phase.

5.2 Summary of calculated data

		PBE-D3					DLPNO-CC	SD(T)
Compd.	PG	N imag	E _{tot}	ZPE	Δ H ^[a]	$\Delta G^{[b]}$	E CCSD(T)	T 1
PhCHO	Cs	0	-345.2874	0.1064	0.1138	0.0757	-344.9510	0.013
C ₆ H ₄ NO ₂ CHO	Cs	0	-549.7013	0.1085	0.1186	0.0732	-549.1853	0.015
C ₆ H ₄ CICHO	Cs	0	-804.7246	0.0972	0.1058	0.0642	-804.0788	0.012
EtCHO	C_1	0	-192.9814	0.0817	0.0878	0.0540	-192.8117	0.013
[P(µ-NTer)] ₂ (1)	D_2	0	-2649.5088	0.8217	0.8776	0.7310	-2646.8693	0.010
2	C ₁	0	-2994.8492	0.9329	0.9946	0.8365	-2991.8779	0.010
3	C_1	0	-3199.2697	0.9353	0.9996	0.8354	-3196.1170	0.011
4	C ₁	0	-3454.2873	0.9238	0.9867	0.8254	-3451.0073	0.010
5	C ₁	0	-2842.5482	0.9088	0.9687	0.8149	-2839.7414	0.010
6	C_1	0	-3827.5205	1.0528	1.1249	0.9594		
H ₂	$D_{\infty h}$	0	-1.1661	0.0098	0.0131	-0.0017	-1.1683	0.006
HC≡CH	$D_{\infty h}$	0	-77.2526	0.0259	0.0298	0.0069	-77.1837	0.013
$H_2C=CH_2$	D_{2h}	0	-78.5029	0.0496	0.0536	0.0287	-78.4290	0.011
H ₂ C=O	<i>C</i> ₂ <i>v</i>	0	-114.4206	0.0256	0.0294	0.0046	-114.3314	0.016
[P(μ-NH)] ₂ (1H)	D_{2h}	0	-793.0526	0.0322	0.0378	0.0057	-792.3371	0.012
1H …H₂ vdW	C_{2v}	0	-794.2236	0.0454	0.0528	0.0167	-793.5069	0.012
1H …H₂ TS	C_{2v}	1	-794.2132	0.0460	0.0513	0.0192	-793.4867	0.016
$\mathbf{1H} \cdot H_2$	C_{2v}	0	-794.2368	0.0490	0.0547	0.0218	-793.5255	0.014
1H …HC≡CH vdW	Cs	0	-870.3124	0.0591	0.0688	0.0259	-869.5237	0.012
1H …HC≡CH TS	C_{2v}	1	-870.3123	0.0589	0.0678	0.0269	-869.5209	0.012
1H · HC≡CH	C_{2v}	0	-870.3728	0.0640	0.0706	0.0355	-869.5832	0.015
1H ····H ₂ C=CH ₂ vdW			[c]					
1H …H ₂ C=CH ₂ TS			[c]					
$\mathbf{1H} \cdot H_2C=CH_2$	C_{2v}	0	-871.6142	0.0868	0.0938	0.0578	-870.8232	0.014
1H ····H ₂ C=O vdW			[c]					
1H …H₂C=O TS			[c]					
1H · H ₂ C=O	Cs	0	-907.5414	0.0641	0.0706	0.0348	-906.7369	0.015

Table S6. Summary of calculated data (structures optimized at PBE-D3/def2-TZVP, single point energies at DLPNO-CCSD(T)/def2-TZVP). All energies given in atomic units.

[a] Thermal correction to enthalpy (298 K); [b] thermal correction to Gibbs energy (298 K, 1 atm); [c] no stationary point found.

		B3LYP-D3					DLPNO-CC	SD(T)
Compd.	PG	N imag	E _{tot}	ZPE	∆H ^[a]	$\Delta G^{[b]}$	E _{CCSD(T)}	T 1
PhCHO	Cs	0	-345.52597	0.1095	0.1168	0.0790	-344.9510	0.013
[P(μ-NTer)] ₂ (1)	D2	0	-2651.1473	0.8454	0.8997	0.7689	-2646.8688	0.010
1 …OC(H)Ph vdW	C1	0	-2996.6875	0.9585	1.0196	0.8751	-2991.8263	0.011
2	C1	0	-2996.7298	0.9609	1.0205	0.8796	-2991.8770	0.010
H ₂	D∞h	0	-1.1732	0.0101	0.0134	-0.0014	-1.1683	0.006
HC≡CH	$D_{\infty h}$	0	-77.3157	0.0268	0.0306	0.0078	-77.1835	0.013
$H_2C=CH_2$	D_{2h}	0	-78.5697	0.0509	0.0549	0.0301	-78.4289	0.011
H ₂ C=O	C_{2v}	0	-114.4969	0.0265	0.0303	0.0055	-114.3315	0.015
[P(μ-NH)] ₂ (1H)	D_{2h}	0	-793.3473	0.0333	0.0386	0.0071	-792.3372	0.012
1H …H₂ vdW	C_{2v}	0	-794.5242	0.0469	0.0540	0.0188	-793.5071	0.012
1H …H₂ TS	C_{2v}	1	-794.5068	0.0469	0.0521	0.0202	-793.4869	0.016
$1H \cdot H_2$	C_{2v}	0	-794.5426	0.0504	0.0561	0.0231	-793.5261	0.013
1H ···HC≡CH vdW	Cs	0	-870.6693	0.0611	0.0706	0.0280	-869.5244	0.012
1H …HC≡CH TS	C_{2v}	1	-870.6660	0.0615	0.0694	0.0311	-869.5183	0.013
1H · HC≡CH	C_{2v}	0	-870.7238	0.0660	0.0724	0.0376	-869.5833	0.014
$\mathbf{1H} \cdots H_2 C = CH_2 v dW$	C_{2v}	0	-871.9250	0.0860	0.0954	0.0536	-870.7702	0.011
1H ····H ₂ C=CH ₂ TS	C_{2v}	1	-871.9242	0.0864	0.0944	0.0559	-870.7679	0.012
$\mathbf{1H} \cdot H_2C=CH_2$	C_{2v}	0	-871.9697	0.0893	0.0961	0.0605	-870.8235	0.013
1H ····H₂C=O vdW			[c]					
1H …H₂C=O TS			[c]					
1H · H₂C=O	Cs	0	-907.9089	0.0661	0.0725	0.0370	-906.7375	0.015

Table S7. Summary of calculated data (structures optimized at B3LYP-D3/def2-TZVP, single point energies at DLPNO-CCSD(T)/def2-TZVP). All energies given in atomic units.

[a] Thermal correction to enthalpy (298 K); [b] thermal correction to Gibbs energy (298 K, 1 atm); [c] no stationary point found.

		CCSD(T)					DLPNO-CC	SD(T)
Compd.	PG	N imag	E _{tot}	ZPE	∆H ^[a]	$\Delta G^{[b]}$		
H ₂	$D_{\infty h}$	0	-1.1683	0.0101	0.0134	-0.0014	-1.1740	0.006
HC≡CH	$D_{\infty h}$	0	-77.1843	0.0262	0.0301	0.0072	-77.2089	0.014
$H_2C=CH_2$	D_{2h}	0	-78.4294	0.0507	0.0547	0.0298	-78.4618	0.011
H ₂ C=O	C_{2v}	0	-114.3322	0.0266	0.0304	0.0056	-114.3690	0.015
[P(µ-NH)] ₂ (1H)	D_{2h}	0	-792.3391	0.0332	0.0386	0.0069	-792.4225	0.012
1H …H₂ vdW	C_{2v}	0	-793.5095	0.0461	0.0538	0.0171	-793.5996	0.012
1H …H ₂ TS	C_{2v}	1	-793.4888	0.0474	0.0525	0.0206	-793.5819	0.016
$\mathbf{1H} \cdot H_2$	C_{2v}	0	-793.5273	0.0509	0.0566	0.0238	-793.6211	0.014
1H …HC≡CH vdW	Cs	0	-869.5277	0.0603	0.0700	0.0267	-869.6357	0.012
1H …HC≡CH TS	C_{2v}	1	-869.5214	0.0612	0.0691	0.0308	-869.6294	0.013
1H · HC≡CH	C_{2v}	0	-869.5862	0.0660	0.0723	0.0376	-869.6965	0.014
$\mathbf{1H}$ ····H ₂ C=CH ₂ vdW	C_{2v}	[c]	-870.7735		[c]		-870.8893	0.011
1H …H ₂ C=CH ₂ TS	C_{2v}	[c]	-870.7709		[c]		-870.8871	0.012
$\mathbf{1H} \cdot H_2C=CH_2$	C_{2v}	[c]	-870.8257		[c]		-870.9448	0.013
1H ····H ₂ C=O vdW	Cs	0	-906.6785	0.0621	0.0712	0.0294	-906.7987	0.016
1H …H₂C=O TS	Cs	1	-906.6780	0.0626	0.0703	0.0315	-906.7986	0.018
1H · H₂C=O	Cs	0	-906.7400	0.0664	0.0727	0.0373	-906.8638	0.014

Table S8. Summary of calculated data (structures optimized at CCSD(T)/def2-TZVP, single point energies at DLPNO-CCSD(T)/def2-QZVPP). All energies given in atomic units (E_h).

[a] Thermal correction to enthalpy (298 K); [b] thermal correction to Gibbs energy (298 K, 1 atm); [c] no frequency calculation performed due to system size.

		DLPNO-	·CCSD(T)//	PBE-D3 ^[a]	DLPNO	-CCSD(T)//	/B3LYP ^[b]		CCSD(T) ^[c]		DLPNO-0	CCSD(T)//	CCSD(T) ^[d]
Reaction		ΔU₀	ΔΗ	ΔG°	ΔU₀	ΔΗ	ΔG°	Δ <i>U</i> 0	ΔΗ	ΔG°	ΔU₀	ΔH	ΔG°
1 + Ph-CHO → 2		-138.3	-142.7	-80.7	-134.7	-139.7	-75.1						
$1 + O_2 N - C_6 H_4 - CHO \rightarrow 3$		-150.4	-154.9	-89.8									
$1 + \text{CI-C}_6\text{H}_4\text{-CHO} \rightarrow 4$		-142.4	-146.7	-84.1									
1 + Et-CHO → 5		-144.4	-149.9	-88.0									
$\mathbf{1H} + \mathbf{H}_2 \rightarrow \mathbf{1H} \cdot \mathbf{H}_2$	vdW	4.5	0.9	21.5	5.0	1.1	22.3	1.7	-0.6	16.9	-0.9	-3.2	14.3
	TS	59.3	49.8	81.0	58.2	49.1	79.0	59.4	50.2	80.4	48.9	39.7	70.0
	Prod.	-34.9	-43.1	-14.1	-35.8	-43.2	-16.2	-32.4	-40.3	-12.4	-44.7	-52.6	-24.7
1H + HC≡CH → 1H · HC≡CH	vdW	-5.0	-4.3	19.6	-7.2	-6.3	16.5	-9.0	-7.6	13.9	-9.2	-7.8	13.7
	TS	1.8	0.3	29.4	9.8	6.8	40.8	9.9	6.6	41.2	9.6	6.3	41.0
	Prod.	-148.4	-155.8	-111.5	-149.0	-156.0	-112.8	-147.8	-155.3	-111.2	-153.8	-161.3	-117.3
$\mathbf{1H} + H_2C=CH_2 \rightarrow \mathbf{1H} \cdot H_2C=CH_2$	vdW		[e]		-6.2	-5.9	24.5	-7.6 ^[f]	-7.5 ^[f]	23.4 ^[f]	-7.9 ^[f]	-7.8 ^[f]	23.1 ^[f]
	TS		[e]		1.0	-2.5	36.5	0.3 ^[f]	-3.3 ^[f]	36.1 ^[f]	-1.3 ^[f]	-4.9 ^[f]	34.6 ^[f]
	Prod.	-136.7	-143.5	-96.2	-137.1	-143.6	-97.2	-136.1 ^[f]	-142.7 ^[f]	-95.9 ^[f]	-145.0 ^[f]	-151.7 ^[f]	-104.9 ^[f]
1H + H ₂ C=O \rightarrow 1H \cdot H ₂ C=O	vdW		[e]			[e]		-12.9	-13.2	17.5	-13.1	-13.5	17.3
	TS		[e]			[e]		-10.3	-14.1	24.3	-11.5	-15.3	23.1
	Prod.	-163.4	-170.8	-123.2	-164.1	-171.3	-124.6	-163.0	-170.5	-123.1	-172.6	-180.1	-132.8

Table S9. Computed reaction energies in kJ/mol (ΔH , ΔG° at 298.15 K, c° = 1 mol/L).

[a] DLPNO-CCSD(T)/def2-TZVP//PBE-D3/def2-TZVP; [b] DLPNO-CCSD(T)/def2-TZVP//B3LYP-D3/def2-TZVP; [c] CCSD(T)/def2-TZVP; [d] DLPNO-CCSD(T)/def2-QZVPP//CCSD(T)/def2-TZVP; [e] no stationary point found; [f] estimated using the thermal correction terms at the B3LYP-D3/def2-TZVP level of theory. Evaluation of the thermal corrections of the other model systems implies that the average error with respect to the thermal corrections computed at the CCSD(T)/def2-TZVP level of theory is below 0.5 m E_h (~1 kJ/mol). As can be inferred from Table S9, both PBE-D3 and B3LYP-D3 perform equally well in predicting the structures of the reaction products of the model reactions. Thus, the reaction energies including DLPNO-CCSD(T) electronic energies are close to those of the canonical CCSD(T) calculations. However, B3LYP-D3 performs considerably better in predicting the structures of the van-der-Waals (vdW) complexes as well as transition states (TS). Yet, both DFT methods fail to identify the TS of the addition of H₂C=O, which according to coupled-cluster calculations lies only ~2 kJ/mol higher in energy than the vdW complex (ΔU_0). The reaction barrier ($\Delta G^{\dagger} = 23$ kJ/mol) is therefore of entropic nature.

In the fourth column of Table S9, we included electronic energies calculated at the DLPNO-CCSD(T)/def2-QZVPP level of theory (quadruple-zeta basis) to investigate the basis set truncation error. In most cases, the energies are quite similar to the results at the triple-zeta level, with some notable exceptions: All addition products as well as the TS of the H₂ addition are stabilized by ~10 kJ/mol when using the QZ basis. The energies of the other transition states as well as the vdW complexes, however, remain nearly unaffected by the change in the number of basis functions, indicating that these values are well converged and, in particular, are not compromised by basis set superposition errors (BSSE).

5.3 Optimized structures (.xyz-files)

5.3.1 PhCHO

14				
PhCHO @	PBE-D3/def2-T	ZVP - Cs		
C	0.57235	-2.15794	-0.00000	
С	1.61832	-1.23165	-0.00000	
С	1.33077	0.13251	-0.00000	
С	-0.00000	0.57315	0.0000	
С	-1.04707	-0.36255	0.00000	
С	-0.75944	-1.72301	0.0000	
Н	0.79403	-3.22660	-0.00000	
Н	2.65369	-1.57538	-0.00000	
Н	2.13739	0.87049	-0.00000	
Н	-2.07413	0.00639	0.00000	
Н	-1.56980	-2.45368	0.0000	
С	-0.28309	2.02482	0.00000	
0	-1.39583	2.52201	0.00000	
Н	0.63438	2.67065	0.00000	
14				
PhCHO @	B3I YP-D3/def2	-T7VP - Cs		
C	0.59275	-2.18334	0.00000	
C	1.63383	-1.26193	0.00000	
C	1.34852	0.09703	-0.00000	
C	0.02492	0.53653	-0.00000	
C	-1.01764	-0.39428	-0.00000	
C	-0.73246	-1.74907	-0.00000	
Н	0.81176	-3.24365	0.00000	
H	2,66083	-1.60319	0.00000	
H	2.15124	0.82571	-0.00000	
Н	-2.03686	-0.03083	-0.00000	
Н	-1.53738	-2.47272	-0.00000	
С	-0.25917	1.98561	0.00000	
0	-1.36405	2.47473	0.00000	
Н	0.64462	2.63065	0.00000	

5.3.2 C₆H₄NO₂CHO

16				
02N-	C6H4-CHO @ PBE-D3/	def2-TZVP - Cs		
С	-0.0000	1.04455	0.00000	
С	1.27456	0.48221	0.00000	
С	1.38064	-0.90596	-0.00000	
С	0.22899	-1.70532	-0.00000	
С	-1.04312	-1.11029	-0.00000	
С	-1.16437	0.27319	0.00000	
Н	2.14700	1.13335	0.00000	
Н	2.36473	-1.38074	-0.00000	
Н	-1.92226	-1.75639	-0.00000	
Н	-2.13287	0.77068	0.00000	
С	0.36808	-3.18336	-0.00000	
0	-0.56573	-3.96354	-0.00000	
Н	1.42759	-3.54832	-0.00000	
Ν	-0.12465	2.52590	0.00000	
0	-1.26169	2.99786	0.00000	
0	0.91739	3.18193	0.00000	

5.3.3 C₆H₄ClCHO

_				
14				
C1-C6	5H4-CHO @ PBE-D3/d	lef2-TZVP - Cs		
С	-1.20207	0.57727	0.00000	
С	-1.21492	-0.82007	0.00000	
С	-0.00059	-1.50073	0.00000	
С	1.21326	-0.79985	-0.00000	
С	1.20281	0.60455	-0.00000	
С	0.00000	1.29768	-0.00000	
н	-2.16442	-1.35433	0.00000	
н	0.01094	-2.59369	0.00000	1
н	2.15744	1.13333	-0.00000	
н	-0.02439	2.38713	-0.00000	
С	2.48828	-1.54588	-0.00000	
0	3.59566	-1.03623	-0.00000	
н	2.36821	-2.66094	-0.00000	
C1	-2.70786	1.44120	0.00000	

5.3.4 EtCHO

10				
EtCHO	@ PBE-D3/def2-TZ	VP - C1		
С	1.68796	0.28603	-0.17895	
С	0.47437	-0.59422	0.14616	
Н	2.60890	-0.31139	-0.19749	
Н	1.57474	0.76665	-1.16072	
Н	1.81819	1.07897	0.57254	
Н	0.30226	-1.36344	-0.61937	U J
Н	0.64424	-1.10565	1.11153	
С	-0.77999	0.22698	0.30244	
0	-1.81918	0.04378	-0.29557	
Н	-0.68888	1.07184	1.04023	

5.3.5 [P(μ-NTer)]₂ (1)

102			
[P(µ-	NTer)]2 @ PBE-D3	/def2-TZVP - D2	
N	-0.00000	0.00000	-1.11373
N	-0.00000	0.00000	1.11373
Р	1.34195	-0.00000	0.00000
Р	-1.34195	0.00000	0.00000
С	0.00000	-0.00000	2.51579
С	1.15163	0.41324	3.22973
С	-1.15163	-0.41324	3.22973
С	1.13077	0.40397	4.62874
С	-1.13077	-0.40397	4.62874
С	0.00000	-0.00000	5.33560
Н	2.02606	0.73377	5.15966
н	-2.02606	-0.73377	5.15966
н	0.00000	-0.00000	6.42632
C	0.00000	-0.00000	-2.51579
C	1.15163	-0.41324	-3.22973
C	-1.15163	0.41324	-3.22973
C	1.13077	-0.40397	-4.62874
C	-1.13077	0.40397	-4.62874
C	0.00000	-0.00000	-5.33560
н	2.02606	-0.73377	-5.15966
н	-2.02606	0.73377	-5.15966
Н	0.00000	-0.00000	-6.42632
C	-2.38047	0.88/53	-2.53313
C	-3.49608	0.03544	-2.39/2/
C	-2.43121	2.20977	-2.03338
	-4.64223	0.52090	-1./5802
	-3.59631	2.05199	-1.40490
	-4./1164	1.82010	-1.25104
	-2.20022	-0.14550	-1.03030
	-2.02920	3.0/224 0.007E2	-1.01242
	2.30047	-0.00/33	-2.55515
	2 12121	-0.05544	-2.33727
c	A 64223	-0 52090	-1 75802
C	3 59631	-2 65199	-1 40490
C	4 71164	-1 82010	-1 25104
н	5 50022	0 14530	-1 63830
н	3.62928	-3.67224	-1.01242
C	-2.38047	-0.88753	2,53313
C	-3.49608	-0.03544	2.39727
Ċ	-2.43121	-2.20977	2.03338
C	-4.64223	-0.52090	1.75802
С	-3.59631	-2.65199	1.40490
С	-4.71164	-1.82010	1.25104
н	-5.50022	0.14530	1.63830
н	-3.62928	-3.67224	1.01242
С	2.38047	0.88753	2.53313
С	2.43121	2.20977	2.03338
С	3.49608	0.03544	2.39727
С	3.59631	2.65199	1.40490
С	4.64223	0.52090	1.75802
С	4.71164	1.82010	1.25104
Н	3.62928	3.67224	1.01242
Н	5.50022	-0.14530	1.63830
С	-3.44308	1.39457	2.86433
Н	-4.42258	1.87762	2.75186
Н	-3.13262	1.47615	3.91534
Н	-2.71204	1.96531	2.26893

С	-1.23308	-3.11288	2.13905	
Н	-0.84812	-3.15778	3.16829	
Н	-1.47900	-4.13121	1.81134	
Н	-0.40954	-2.74129	1.50731	
С	-5.94791	-2.31721	0.55159	
Н	-5.71638	-2.65276	-0.47111	
Н	-6.38857	-3.17686	1.07962	
Н	-6.71366	-1.53261	0.48677	
С	3.44308	-1.39457	2.86433	
Н	4.42258	-1.87762	2.75186	
Н	3.13262	-1.47615	3.91534	
Н	2.71204	-1.96531	2.26893	
С	1.23308	3.11288	2.13905	
Н	0.40954	2.74129	1.50731	
Н	0.84812	3.15778	3.16829	
Н	1.47900	4.13121	1.81134	
С	5.94791	2.31721	0.55159	
Н	5.71638	2.65276	-0.47111	
Н	6.38857	3.17686	1.07962	
Н	6.71366	1.53261	0.48677	
С	5.94791	-2.31721	-0.55159	
Н	5.71638	-2.65276	0.47111	
Н	6.38857	-3.17686	-1.07962	
Н	6.71366	-1.53261	-0.48677	
С	-5.94791	2.31721	-0.55159	
Н	-5.71638	2.65276	0.47111	
Н	-6.38857	3.17686	-1.07962	
Н	-6.71366	1.53261	-0.48677	
С	-1.23308	3.11288	-2.13905	
Н	-0.84812	3.15778	-3.16829	
Н	-1.47900	4.13121	-1.81134	
Н	-0.40954	2.74129	-1.50731	
С	1.23308	-3.11288	-2.13905	
Н	0.84812	-3.15778	-3.16829	
Н	1.47900	-4.13121	-1.81134	
Н	0.40954	-2.74129	-1.50731	
С	3.44308	1.39457	-2.86433	
Н	4.42258	1.87762	-2.75186	
Н	3.13262	1.47615	-3.91534	
Н	2.71204	1.96531	-2.26893	
С	-3.44308	-1.39457	-2.86433	
Н	-4.42258	-1.87762	-2.75186	
Н	-3.13262	-1.47615	-3.91534	
Н	-2.71204	-1.96531	-2.26893	
102				
[P(µ-N	Ter)]2 @ B3LYP-D	03/def2-TZVP - I	02	
Ν	-0.00000	0.00000	-1.11290	
Ν	-0.00000	0.00000	1.11290	
Р	1.32466	0.00000	-0.00000	
Р	-1.32467	0.00000	0.00000	
С	-0.00000	0.00000	2.51855	
С	1.14131	0.42159	3.23091	
С	-1.14131	-0.42159	3.23091	
С	1.12017	0.41413	4.62316	
С	-1.12017	-0.41413	4.62316	
С	-0.00000	0.00000	5.32734	
Н	2.00486	0.74869	5.15045	
Н	-2.00486	-0.74869	5.15045	
Н	-0.00000	0.00000	6.40949	
С	-0.00000	0.00000	-2.51855	
С	1.14131	-0.42159	-3.23091	

1.14131

-0.42159

-3.23091

C	-1.14131	0.42159	-3.23091
С	1.12017	-0.41413	-4.62316
С	-1.12017	0.41413	-4.62316
C	-0 00000	-0 00000	-5 32734
L L	2,00496	0.00000	5.52754 E 1EQ/E
	2.00480	-0.74009	-5.15045
н	-2.00487	0.74869	-5.15045
Н	-0.00000	-0.00000	-6.40949
С	-2.37292	0.89765	-2.54151
С	-3.47232	0.04124	-2.38772
С	-2.42770	2,21256	-2.04626
Ċ	-4 60835	0 51312	-1 73377
c	2 59036	2 64420	1 /0296
	-3.38030	2.04450	-1.40200
C	-4.6/944	1.80551	-1.22992
н	-5.44920	-0.15580	-1.59648
Н	-3.61625	3.65519	-1.01160
С	2.37292	-0.89765	-2.54151
С	3.47231	-0.04124	-2.38772
C	2.42770	-2.21255	-2.04625
Ċ	4 60835	-0 51311	-1 73377
c	2 59027	2 64420	1 40296
	5.5005/	-2.04429	-1.40200
L 	4.6/944	-1.80550	-1.22992
н	5.44919	0.15581	-1.59648
Н	3.61625	-3.65518	-1.01159
С	-2.37292	-0.89765	2.54151
С	-3.47232	-0.04124	2.38772
Ċ	-2.42770	-2,21256	2,04626
c	-4 60835	_0 51312	1 73377
	-4.00055	2 64420	1 40296
	-3.58050	-2.04450	1.40280
C	-4.6/944	-1.80551	1.22992
Н	-5.44920	0.15580	1.59648
Н	-3.61625	-3.65519	1.01160
С	2.37292	0.89765	2.54151
С	2,42770	2,21256	2,04626
Ċ	3 47231	0 04124	2 38772
Ċ	3 58037	2 64429	1 40286
c	4 60925	0 51011	1 72277
	4.00835	0.51511	1,755/7
L 	4.6/944	1.80550	1.22992
н	3.61625	3.65518	1.01159
Н	5.44919	-0.15581	1.59648
С	-3.41287	1.39009	2.84865
Н	-4.38253	1.87371	2.73252
н	-3.11048	1,47275	3.89307
н	-2 68347	1 95042	2 25736
Ċ	_1 23521	-3 12196	2 15058
	-1.23521	- 3.12190	2.13530
	-0.86947	-3.1/995	5.18024
н	-1.48093	-4.12808	1.82093
Н	-0.40868	-2.75063	1.54753
C	-5.90505	-2.29156	0.50589
Н	-5.65682	-2.62384	-0.50501
н	-6.35928	-3.14138	1.02158
Н	-6.65700	-1.50616	0.42827
C	3 /1287	_1 39009	2 84866
	4 20252	1 07071	2.0+000
	4.38252	-1.0/3/1	2.75255
н	3.11047	-1.4/2/5	3.89308
н	2.68346	-1.95043	2.25737
С	1.23522	3.12196	2.15957
Н	0.40868	2.75063	1.54753
Н	0.86948	3.17995	3.18624
н	1,48094	4,12807	1.82092
C	5 90506	2 2015/	A 50589
L L	5.50500	2.29194	0.50500
п	5.00003	2.02582	1 00150
Н	6.35928	3.14137	1.02158
Н	6.65700	1.50614	0.42827

С	5.90506	-2.29154	-0.50588
Н	5.65682	-2.62382	0.50501
Н	6.35928	-3.14137	-1.02158
Н	6.65700	-1.50614	-0.42827
С	-5.90506	2.29155	-0.50589
Н	-5.65682	2.62383	0.50501
Н	-6.35928	3.14138	-1.02158
Н	-6.65700	1.50615	-0.42827
С	-1.23521	3.12197	-2.15958
Н	-0.86947	3.17995	-3.18624
Н	-1.48093	4.12808	-1.82092
Н	-0.40868	2.75063	-1.54753
С	1.23522	-3.12196	-2.15957
Н	0.86947	-3.17995	-3.18624
Н	1.48093	-4.12807	-1.82092
Н	0.40868	-2.75063	-1.54753
С	3.41287	1.39009	-2.84866
Н	4.38252	1.87371	-2.73253
Н	3.11048	1.47275	-3.89308
Н	2.68346	1.95043	-2.25737
С	-3.41287	-1.39009	-2.84866
Н	-4.38253	-1.87371	-2.73253
Н	-3.11048	-1.47275	-3.89308
Н	-2.68347	-1.95042	-2.25737

5.3.6 [P(μ-NTer)]₂…PhCHO (vdW)

116			
[P(μ-NTer)]2···PhC	CHO (vdW) @ B3LYP	-D3/def2-TZVP -	C1
N 0.20876	-0.84645	0.26708	LI
P -1.09511	0.29209	0.09295	VI VI Y
P 1.50181	0.14178	-0.23033	XXXXXXX
C 0.14994	-2.21999	0.55490	TELA
N 0.26106	1.32659	-0.24842	
C -0.86296	-0.41404	-2.61703	THE PT
0 0.36642	-0.49671	-2.66453	
C -0.99076	-2.74304	1.20853	' HII,
C 1.22212	-3.07960	0.22760	· Arry
C 0.33672	2.71905	-0.44625	1
C -1.78696	-1.56970	-2.70863	
Н -1.35724	0.55494	-2.73857	
C -1.10321	-4.12195	1.36603	
C -2.04314	-1.87769	1.82432	
C 1.05923	-4.45205	0.40752	
C 2.58313	-2.60138	-0.17173	
C 1.57534	3.38143	-0.31249	
C -0.81271	. 3.48382	-0.74079	
C -3.11736	-1.33503	-3.06667	
C -1.35010	-2.88927	-2.57280	
Н -1.98469	-4.51223	1.85768	
C -0.10524	-4.98384	0.93910	
C -1.72346	-1.09221	2.95228	
C -3.36034	-1.88226	1.34136	
Н 1.88475	-5.10179	0.14540	
C 3.06164	-2.71811	-1.48964	
C 3.45565	-2.15645	0.84181	
C 1.65400	4.75140	-0.55018	
C 2.81707	2.71015	0.16487	
C -0.68950	4.85358	-0.96289	
C -2.18317	2.90430	-0.80025	
Н -3.46496	-0.31449	-3.15621	

С	-3.98283	-2.39134	-3.31189
С	-2.21602	-3.94540	-2.81159
Н	-0.33336	-3.07825	-2.27574
Н	-0.21192	-6.05316	1.06641
С	-2.70879	-0.31089	3.54045
С	-0.33154	-1.05559	3.51661
Ċ	-4.31369	-1.06774	1.95149
C	-3 77372	-2 73/05	0 17654
C	1 3733/	-2.34678	-1 76087
	2 20120	2.04070	2 61409
	2.20120	-3.21400	-2.01496
	4.76241	-1.80891	0.51651
C	3.01118	-2.04234	2.2/446
н	2.61749	5.23303	-0.44081
C	0.53514	5.49515	-0.88731
С	2.97298	2.46406	1.54023
С	3.85225	2.40221	-0.72830
Н	-1.58694	5.41490	-1.19089
С	-2.76419	2.61136	-2.04527
С	-2.92731	2.73834	0.37979
н	-5.00877	-2.19353	-3.59676
C	-3.53320	-3.70243	-3,19173
н	-1 86396	-4 96269	-2 69600
Ц	-2 11962	0 20107	1 10253
	-2.44902	0.23407	2 04670
	-4.01057	-0.2/313	3.04079
н	0.32426	-0.45242	2.88481
Н	0.10897	-2.05069	3.57713
н	-0.33284	-0.61442	4.51299
Н	-5.31998	-1.05391	1.54811
Н	-4.06039	-3.73780	0.50360
Н	-2.97049	-2.85159	-0.54238
н	-4.63115	-2.29852	-0.33416
н	4.73042	-2.43909	-2.78946
С	5,24031	-1.88865	-0.78557
н	1 51471	-2 42677	-2 92813
н	1 61288	-4 08517	-2 32377
ц	2 81613	-3 /0280	_3 /7103
11 L	5 12120	1 47004	1 20701
п u	2 07201	1 04411	2 02406
	2.42012	-1.94411	2.93400
H	2.42812	-2.90690	2.59194
Н	2.38647	-1.15809	2.41632
Н	0.61280	6.55981	-1.06405
C	4.17324	1.93471	1.99853
С	1.85340	2.74295	2.50512
C	5.04235	1.88269	-0.22559
С	3.67229	2.58614	-2.21137
С	-4.04202	2.06485	-2.08049
С	-2.03465	2.91111	-3.32878
с	-4,20426	2.18996	0.29858
Ċ	-2.36146	3,11804	1.72152
н	_1 20607	_1 52853	_3 383/1
C	-5 05/32	0 50181	3 60707
	- 5.05452	1 /0001	1 12756
	4 20192	-1.49901	-1.12/30
	4.29182	1.74540	3.05942
C	5.22/50	1.65453	1.13329
Н	1.00152	2.08462	2.31675
Н	1.48782	3.76706	2.41153
Н	2.17930	2.58480	3.53268
Н	5.84252	1.64811	-0.91756
Н	4.52971	2.19047	-2.75502
Н	3.55460	3.63835	-2.47875
Н	2.77901	2.06490	-2.56352
Н	-4.48470	1.82589	-3.04136
С	-4.76462	1.81545	-0,91631

н	-2.48445	2.37819	-4.16657
Н	-0.98014	2.64090	-3.27231
Н	-2.07226	3.98041	-3.55416
Н	-4.76643	2.03637	1.21053
Н	-1.85945	4.08543	1.68849
Н	-1.63020	2.37702	2.05392
Н	-3.15080	3.15957	2.47128
н	-5.97581	0.60789	3.11536
н	-4.70418	1.62060	3.80979
н	-5.29950	0.22659	4.69872
н	7.04487	-2.11233	-1.93959
Н	7.31443	-1.60521	-0.26818
Н	6.69905	-0.45710	-1.45544
С	6.54262	1.15729	1.66637
С	-6.09969	1.12702	-0.97215
н	7.17358	1.99412	1.97983
н	7.09356	0.59655	0.91234
н	6.40198	0.51542	2.53768
Н	-5.96417	0.04227	-1.02320
н	-6.67028	1.42613	-1.85313
Н	-6.69735	1.34254	-0.08582

5.3.7 [P(μ-NTer)]₂·PhCHO (2)

116			
[P(μ-NTer)]2·PhCHO @	<pre>PBE-D3/def2-TZVP</pre>	- C1	
N 0.22027	-0.88769	0.43586	
P -1.14391	0.20561	0.06442	
P 1.28394	-0.01097	-0.66052	
C 0.18098	-2.25583	0.73969	MELT IT
N 0.23450	1.29966	-0.09827	ANIL
C -1.01691	-0.22537	-1.82696	HALF
0 0.40193	-0.36714	-2.06309	
C -0.92241	-2.77924	1.47144	EX / YL
C 1.25165	-3.12353	0.38867	THE AT
C 0.32811	2.65858	-0.42090	
C -1.83149	-1.39878	-2.27110	<i>L</i> .
Н -1.36375	0.68005	-2.34216	7
C -0.99110	-4.15518	1.71390	
C -1.98593	-1.90130	2.04049	
C 1.13712	-4.49208	0.66461	
C 2.55154	-2.63122	-0.16115	
C 1.60162	3.28428	-0.33056	
C -0.79827	3.44566	-0.77818	
C -3.15422	-1.18876	-2.69315	
C -1.33094	-2.70545	-2.26429	
Н -1.84948	-4.53697	2.26952	
C 0.01519	-5.02284	1.29621	
C -1.66940	-1.01123	3.09671	
C -3.31858	-1.98461	1.57851	
Н 1.97129	-5.14025	0.38805	
C 2.94968	-2.87763	-1.49612	
C 3.46165	-2.00713	0.72837	
C 1.73347	4.63009	-0.69156	
C 2.80837	2.61178	0.23424	
C -0.61743	4.79338	-1.11602	
C -2.19460	2.92359	-0.76189	
Н -3.55886	-0.17476	-2.69316	
C -3.94754	-2.25735	-3.10902	
C -2.12001	-3.77392	-2.69177	
Н -0.31723	-2.88243	-1.91967	

Н	-0.05379	-6.09215	1.49866
С	-2.67295	-0.20028	3.63040
С	-0.27527	-0.91412	3.65151
С	-4.28758	-1.14096	2.13545
С	-3.72896	-2.95242	0.50312
С	4.20597	-2.43493	-1.92518
С	2.06982	-3.58004	-2.49522
C	4.71397	-1.60758	0.26016
Ċ	3,10188	-1.75698	2.16666
н	2 72111	5 08832	-0 60872
Ċ	0 63928	5 3901/	-1 09781
C C	2 88590	2 38682	1 62770
Ċ	2.00550	2.30002	A EQ102
	J.921/0 1 E0010	2.32034	1 20405
	-1.50018	5.57728	-1.3844/
C	-2.88261	2.69669	-1.9/615
C	-2.8/449	2.76487	0.46/89
Н	-4.97263	-2.07354	-3.43662
C	-3.43180	-3.55610	-3.11795
н	-1.70659	-4.78412	-2.68155
Н	-2.41703	0.48391	4.44460
С	-3.98939	-0.24075	3.15835
Н	0.37912	-0.34876	2.97025
Н	0.18087	-1.90586	3.77684
н	-0.27714	-0.40163	4.62242
н	-5.31013	-1.19252	1.75053
н	-3.97477	-3,93801	0.93047
н	-2.93450	-3.11502	-0.23332
н	-4 62097	-2 59137	-0 02499
н	4.02057	-2 61966	-2 96312
Ċ	5 10032	-1 78983	-1 06075
с u	1 47575	-1.70505	-1.00975
	1,47373	-2.0002	-3.00/30
	1.37221	-4.2/8/0	-2.01/01
н	2.68094	-4.14170	-3.21503
н	5.40905	-1.13894	0.9585/
Н	3.99641	-1.50802	2.75203
Н	2.60850	-2.62653	2.62264
н	2.40569	-0.90847	2.25419
н	0.75989	6.44110	-1.36266
С	4.07990	1.90638	2.17328
С	1.71600	2.67765	2.52737
С	5.10127	1.86651	0.00675
С	3.83989	2.47097	-2.08122
С	-4.20545	2.24579	-1.93483
С	-2.21938	2.93825	-3.30780
С	-4.20061	2.32125	0.46054
с	-2.19436	3,05451	1.77701
Н	-4,04889	-4.39134	-3.45251
C	-5.05357	0.63340	3.76518
Ċ	6 43511	-1 30662	-1 56736
с ц	1 13/00	1 73003	3 25302
C	5 207/1	1 65005	1 20/15
с u	0 072041	2 00572	2 20497
	1 24621	2.005/5	2.50407
	1.54051	5.70417	2.305/4
н	1.99111	2.548/1	3.58221
н	5.96116	1.65030	-0.63251
Н	4.78098	2.16029	-2.55388
Н	3.62168	3.50243	-2.39249
Н	3.03180	1.84141	-2.48751
Н	-4.72731	2.05552	-2.87738
С	-4.87641	2.03062	-0.72589
Н	-2.71502	2.36437	-4.10263
Н	-1.15303	2.67340	-3.29235
Н	-2.26829	4.00276	-3.58689

Н	-4.71418	2.18667	1.41457
Н	-1.53146	3.92724	1.70741
Н	-1.57775	2.19715	2.09426
Н	-2.93412	3.23036	2.56894
Н	-5.94183	0.69002	3.12093
Н	-4.68587	1.65578	3.93806
Н	-5.37887	0.24068	4.74184
Н	6.89830	-2.03292	-2.25057
Н	7.12997	-1.12191	-0.73687
Н	6.32547	-0.36210	-2.12435
С	6.49888	1.20081	2.00650
С	-6.26960	1.46425	-0.70298
Н	7.01583	2.03493	2.50736
Н	7.18598	0.79402	1.25180
Н	6.32734	0.42651	2.76929
Н	-6.23545	0.36221	-0.68911
Н	-6.84451	1.76317	-1.59048
Н	-6.82017	1.78534	0.19200

116

110			
[P(µ-NTer)]2.PhCHO @	B3LYP-D3/def2-TZVP	- C1
Ν	0.24726	-0.87510	0.38792
Р	-1.13294	0.20098	0.06581
Р	1.23990	-0.00419	-0.76521
С	0.22661	-2.24068	0.70600
Ν	0.20975	1.29218	-0.19279
С	-1.10396	-0.28280	-1.80143
0	0.30310	-0.40701	-2.09665
С	-0.83174	-2.75542	1.49438
С	1.26991	-3.10864	0.30708
С	0.31108	2.66600	-0.44037
С	-1.91505	-1.48302	-2.17265
Н	-1.48281	0.58491	-2.33289
С	-0.89332	-4.12304	1.74342
С	-1.85866	-1.86385	2.10753
С	1.16434	-4.46973	0.58691
С	2.54729	-2.61277	-0.29032
С	1.56780	3.28498	-0.25447
С	-0.79239	3.46218	-0.81293
С	-3.24902	-1.30485	-2.54813
С	-1.40199	-2.77603	-2.13867
Н	-1.71612	-4.49927	2.33771
С	0.07936	-4.99211	1.27339
С	-1.47770	-0.95932	3.12017
С	-3.20127	-1.91799	1.70088
Н	1.97249	-5.11838	0.27216
С	2.87499	-2.79795	-1.64519
С	3.49063	-2.01455	0.57001
С	1.71523	4.63858	-0.54677
С	2.73117	2.58429	0.36166
С	-0.60200	4.81723	-1.07982
С	-2.18398	2.93438	-0.87497
Н	-3.66234	-0.30566	-2.57418
С	-4.04201	-2.39121	-2.89179
С	-2.19023	-3.86365	-2.49263
Н	-0.38532	-2.93397	-1.83076
Н	0.01557	-6.05272	1.47742
С	-2.42679	-0.09805	3.65500
С	-0.06229	-0.89457	3.62251
С	-4.11715	-1.02319	2.25444
С	-3.68927	-2.91043	0.68264
С	4.09047	-2.31081	-2.12210

С	1.96042	-3.48238	-2.62448
С	4.70277	-1.57334	0.05632
С	3.20773	-1.82207	2.03412
Н	2.68599	5.09342	-0.39400
С	0.64514	5.41005	-0.97357
С	2.70912	2.31100	1.74150
С	3.88355	2.30605	-0.38606
н	-1.46419	5.40811	-1.36314
С	-2.78991	2,67896	-2.11768
Ċ	-2.92126	2.76736	0.30839
н	-5 07293	-2 23148	-3 18269
C	-3 51/09	-3 67781	_2 87222
L L	1 76746		2.07222
	-1./0/40	-4.03904	-2.439//
	-2.12500	0.39093	4.42000
	-3./5100	-0.10133	3.22304
н	0.59037	-0.43003	2.88292
Н	0.33/39	-1.88946	3.8221/
Н	-0.00647	-0.30782	4.53915
Н	-5.14405	-1.04874	1.90700
Н	-3.95525	-3.85787	1.16043
Н	-2.93813	-3.13268	-0.06823
Н	-4.57866	-2.53737	0.17688
Н	4.32538	-2.44240	-3.17276
С	5.01209	-1.68437	-1.29414
Н	1.30102	-2.75828	-3.10710
н	1.33790	-4.23731	-2,14865
н	2.54389	-3.96825	-3.40726
н	5 42225	-1 12795	0 72937
н	1 13591	-1 68907	2 58901
	2 66/10	2 66477	2,50501
п	2.00410	-2.004//	2.43322
	2.002/2	-0.92764	2.19400
	0.77400	0.40329	-1.104//
	3.84580	1./85/2	2.34585
C	1.48///	2.59844	2.5/150
C	5.00529	1.79508	0.26192
C	3.91168	2.50861	-1.87697
C	-4.09441	2.19981	-2.14906
C	-2.04345	2.91108	-3.40532
С	-4.22393	2.27791	0.23322
С	-2.32644	3.08907	1.65124
Н	-4.12886	-4.52528	-3.14698
С	-4.75578	0.84645	3.81916
С	6.30033	-1.13598	-1.84183
Н	3.82472	1.58133	3.41086
С	5.01123	1.53718	1.62671
Н	0.65083	1.97014	2.26475
н	1.16575	3,63537	2,45769
Н	1.68458	2,41254	3.62693
Н	5.89407	1,58277	-0.32049
н	1 87027	2 19572	-2 29030
н	3 7//66	3 5/966	-2.25050
	2 12052	1 01062	2,15705
п	J.120J2	1.91902	2.30133
	-4.55254	1.90975	-2.10959
	-4.02012	1.30021	-0.98143
н	-2.54/80	2.42236	-4.23892
Н	-1.01934	2.53840	-3.35316
Н	-1.97240	3.9//44	-3.63315
Н	-4.77835	2.12578	1.15085
Н	-1.64468	3.93646	1.59754
Н	-1.76383	2.23627	2.03974
Н	-3.11021	3.31585	2.37346
Н	-5.68232	0.85557	3.24419
Н	-4.36581	1.86557	3.85541

Н	-5.00547	0.56101	4.84474
Н	6.67628	-1.74506	-2.66532
Н	7.07121	-1.08678	-1.07172
Н	6.15434	-0.12243	-2.22634
С	6.23931	1.00845	2.31596
С	-6.19537	1.36274	-1.03881
Н	6.65229	1.74841	3.00663
Н	7.01934	0.75470	1.59751
Н	6.01433	0.11424	2.90247
Н	-6.13106	0.27824	-1.17033
Н	-6.77318	1.75879	-1.87578
Н	-6.75077	1.54922	-0.11926

5.3.8 $[P(\mu-NTer)]_2 \cdot C_6H_4NO_2CHO$ (3)

118		
[P(μ-NTer)]2.C6H4	NO2CHO @ PBE-D3/d	ef2-TZVP - C1
P 1.4063	3 0.33477	-0.69167
P -0.6919	1 -0.74213	0.25782
0 0.2243	2 0.61808	-1.88417
N 0.8821	4 -1.30445	-0.29022
N 0.3374	1 0.65819	0.67023
C -1.0241	5 0.00290	-1.52418
C 1.3308	7 -2.50719	-0.85201
C -0.0546	3 1.89213	1,21399
Н -1.1805	2 -0.88202	-2.15476
C -2.2058	9 0.90387	-1.61757
C 2,7335	8 -2.71610	-0.94233
C 0 4521	5 -3 53496	-1 28127
C -1 1302	1 1 93594	2 14524
C 0 6427	1 3 09134	0 90258
C -3 4727	6 0 33834	-1 85462
C -2 1064	7 2 29328	-1 45954
C 3 2157	7 _3 88351	-1 5/5/6
C 3,7364	9 -1 80168	-0 32156
C 0 9834	8 -4 69362	-1 86334
C -1 0261	1 -3 47409	-1 09694
C _1 5592	7 3 17/31	2 63/62
C -1 7841	A 0.69350	2.05402
C 0 1763	9 4 30402	1 42612
C 1 9251	1 3 10467	0 13504
H -3 5602	5 -0 74320	-1 97124
C -4 6056	2 1 13675	-1 94481
	9 3 10646	-1 55541
н _1 1366	9 2 73518	-1 25710
Н 4 2971	3 -4 02472	-1 59895
C 2 3546	5 -4 86974	-2 02085
C 2.5540	9 -1 05738	-1 12075
C 3 8794	8 -1 79493	1 08581
н 0.2884	0 <u>-5</u> 47295	-2 18208
C _1 5925	5 -3 73125	0 17243
C -1.5525	1 _3 27590	_2 21/245
H _2 3908	3 3 18926	2,21424
C _0 93/1	3 1 36270	2 26/55
	a = 0.20588	3 46246
C _3 1/00	0 0.20588	2 35062
H 0 7250	1 5 21205	1 17620
C 2 0204	3 3 63071	_1 17/83
C 2.0204	1 2 68100	0 798/6
	a a 71/55	-2 13160
	0 2 51856	-1 79962
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2.01000	1.75502

н	-3.16429	4.18670	-1.43558
Н	2.74905	-5.77910	-2.47549
С	5.66611	-0.35042	-0.50272
С	4.44937	-0.96399	-2.61212
С	4.91863	-1.05811	1.66012
С	2.95050	-2.58707	1.96485
С	-2.98515	-3.71564	0.31217
С	-0.73073	-4.02063	1.37029
Ċ	-3.25601	-3.27107	-2.02770
Ċ	-1.30113	-3.07437	-3.59503
н	-1 28224	5 31834	2 65754
Ċ	-1 66390	-1 37716	3 90991
C C	0 37513	0 07073	3 852/8
	2 70607	0.07075	2 01 502
	-3.70007	1 27070	2.0100
	-4.00270	1.5/8/8	1.00091
	3.26447	3.64156	-1.815/8
C	0.83401	4.16646	-1.93045
C	4.32702	2./413/	0.12822
C	3.06601	2.16082	2.20833
Ν	-5.66842	3.37013	-1.88945
н	6.35673	0.22237	-1.12697
C	5.83540	-0.34266	0.88323
Н	5.28500	-0.42123	-3.07329
Н	3.52095	-0.41930	-2.85229
Н	4.37024	-1.95007	-3.08932
н	5.02576	-1.06211	2.74866
н	2,90312	-3.64079	1.65191
н	1,92394	-2.19465	1,90942
н	3,27645	-2.54981	3.01237
н	-3 41539	-3 89955	1 29921
Ċ	_3 83/15	-3 46677	-0 76723
L L	0 19046	4 55057	1 00277
	1 27060	4.55057	2 10500
	-1.27900	-4.02540	2.10590
	-0.43/54	-3.08401	1.8/400
	-3.90404	-3.10007	-2.89303
н	-0.40319	-2.44014	-3.581//
н	-2.04486	-2.61946	-4.26281
Н	-0.99272	-4.03246	-4.04185
Н	-1.08836	-2.06426	4.53693
С	-2.98758	-1.69424	3.58290
Н	0.67493	-0.55840	4.70074
Н	0.52259	1.12469	4.12548
Н	1.05917	-0.13917	3.01615
Н	-4.74655	-0.99646	2.55809
н	-3.42692	1.95707	0.85646
Н	-4.48243	2.10590	2.26172
н	-4.80463	0.84514	1.06074
н	3.32309	4.03589	-2.83428
с	4,42798	3.19085	-1.19072
н	1 14135	4 98656	-2 59361
н	0 05010	4 54357	-1 26235
н	0.39257	3 38200	-2 56466
ц	5 22823	2 12522	0 65475
и Ц	2 68030	1 12650	2 22200
	2.08930	2 76120	2.23233
	2.40030	2.70130	2.04958
н	4.0/302	2.1513/	2.64496
0	-5.51626	4.589/6	-1.//109
0	-6./5624	2.81379	-2.07389
C	6.97177	0.40567	1.52685
С	-5.32344	-3.37661	-0.57576
C	-3.62136	-2.96471	4.08095
С	5.74613	3.18873	-1.91497
Н	7.71576	-0.28756	1.94982

6.61930	1.03943	2.35507
7.49111	1.04741	0.80205
-5.86824	-3.68569	-1.47843
-5.62263	-2.33929	-0.35103
-5.65965	-4.00061	0.26358
-2.95632	-3.82922	3.93711
-4.56958	-3.16867	3.56516
-3.83736	-2.90309	5.15935
5.82919	2.30573	-2.56924
6.59020	3.15946	-1.21251
	6.61930 7.49111 -5.86824 -5.62263 -5.65965 -2.95632 -4.56958 -3.83736 5.82919 6.59020	6.619301.039437.491111.04741-5.86824-3.68569-5.62263-2.33929-5.65965-4.00061-2.95632-3.82922-4.56958-3.16867-3.83736-2.903095.829192.305736.590203.15946

5.3.9 [P(μ-NTer)]₂·C₆H₄ClCHO (4)

110		
[P(µ-NIer)]2C6H4CICHO	@ PBE-D3/det2-1	ZVP - C1
Cl 5.58156	-4.03305	-2.25645
C 4.26486	-2.90611	-2.06410
C 2.98998	-3.37785	-1.75200
C 4.50033	-1.53833	-2.21333
C 1.94581	-2,46848	-1.58883
Н 2.81873	-4,44684	-1.62600
Н 5 50179	-1 18236	-2 45538
C 3 44378	-0 6/300	-2 05703
C 3.15034	1 00261	-2.05705
	-1.09501	-1.74/33
H 0.95763	-2.83409	-1.32854
H 3.62413	0.42624	-2.1/5/8
C 1.05441	-0.09060	-1.58048
P 0.84512	0.62268	0.21781
0 -0.25825	-0.58731	-1.91906
Н 1.26432	0.78933	-2.20259
P -1.36838	-0.24649	-0.68069
N -0.70088	1.33259	-0.24971
N -0.28798	-0.69629	0.63642
C -1.05885	2,58173	-0.77115
C 0.01548	-1.97059	1,13834
C -0 10610	3 54808	-1 18676
$C = -2 \Lambda 119$	2 90724	-0 83/56
	-3 10006	0 82473
C 1 11252	-3.10000	2 0200
	-2.12030	2.03030
C -0.54930	4.70207	-1./2/04
C 1.36482	3.36135	-1.03116
C -2.83492	4.12682	-1.39689
C -3.50896	2.05781	-0.23003
C -0.40837	-4.36067	1.30190
C -2.09576	-2.99202	0.10554
C 1.45446	-3.41073	2.47419
C 1.88473	-0.96010	2.54546
Н 0.20286	5.49150	-2.03577
C -1.90345	5.05457	-1.85733
C 1.96933	3.53227	0.23519
C 2.17308	3.12621	-2.16748
Н -3.90200	4.35589	-1.42995
C -4.46399	1,41434	-1.04463
C -3 64068	2,01362	1,17710
Н _1 0/0/6	-5 21/8/	1 05032
C 0 70117	_1 52266	2 00002
	2 40706	2,0000
-3.21359	-2.49/00	0.8228/
C -2.2/942	-3.4/659	-1.21099
н 2.30471	-3.51224	3.15087
C 3.24892	-0.79055	2.21820
C 1.25595	-0.02928	3.41033

Н	-2.22878	6.00591	-2.27961
С	3.35723	3.39647	0.35119
С	1.14846	3.85392	1.45319
С	3.55543	2.99719	-2.00413
С	1.56946	3.01591	-3.54396
С	-5.54977	0.77191	-0.44130
С	-4.30347	1.36862	-2.54061
С	-4.73293	1.34486	1.73672
С	-2.64027	2.69268	2.07201
Н	1.00084	-5.52490	2.45626
С	-4.46249	-2.45327	0.20204
С	-3.08006	-2.00803	2.23832
С	-3.54588	-3.38724	-1.79941
С	-1.16075	-4.06579	-2.02755
С	3.92980	0.33688	2.69448
С	3.99759	-1.78579	1.37531
С	1.98144	1.06917	3.87514
С	-0.17747	-0.19302	3.83377
Н	3.81577	3.51358	1.33546
с	4.16575	3.10610	-0.74877
H	0.72095	2.93607	1.88992
н	0.31275	4.52498	1.21472
Н	1.77016	4.32069	2.22840
Н	4.17445	2.80260	-2.88501
Н	0.61264	2,47495	-3.53154
Н	2,25539	2.50460	-4.23266
н	1.35425	4,01084	-3.96443
н	-6.28705	0.27514	-1.07723
C	-5.71058	0.73366	0.94553
н	-3.35341	0.88141	-2.81387
н	-4 28403	2 37128	-2 99061
н	-5 12051	0 79920	-3 00295
н	-4 83087	1 31909	2 82585
н	-2 96142	2 65151	3 12090
н	-2 500172	3 74709	1 79060
н	-1 65328	2 21211	1 99412
н	-5 31666	-2 08112	0 76988
Ċ	-4 64879	-2 87015	-1 11797
н	-1 06670	_1 91170	2 70957
н	-2 60510	-1 01528	2.70557
Ц	-2.00010	-2 67958	2.20041
Ц	-3 67247	-2.07938	-2 82264
	0 20070	- 5.75250	1 10205
п Ц	-0.59979	2 29260	2 62107
	1 55252	4 91201	2.02107
п Ц	1 07617	-4.01201	2.75205
п С	4.9/01/	1 20101	2.40/05
L L	J.JI/JJ A ADEA1	2 507/2	1 00972
n U	4.42541	-2.30/43	1.99075
	4.05050	-1.50210	0.04000
П	3.35193	-2,209/3	0.03502
	1.40550	1 22050	4.54000
	-0.41095	-1.23039	4.07758
	-0.001//	0.10428	3.02445
	-0.39/98 E 64270	0.43099	4./09/5
C	5.643/9	2.8/959	-0.58498
C	-0.90410	0.005/6	1.5/433
C	-5.99218	-2./6384	-1./8626
C	4.0/525	2.4/312	4.03809
Н	6.03821	3.4140/	0.29002
Н	6.20519	3.20396	-1.4/225
Н	5.85552	1.80760	-0.43672
Н	-6.60996	-0.57486	2.41954
Н	-7.44690	-0.55347	0.84699

Н	-7.61343	0.81039	1.96919
н	-6.20562	-3.64582	-2.40696
н	-6.02954	-1.88443	-2.44945
н	-6.79958	-2.65644	-1.04918
Н	4.33732	2.34259	5.10014
Н	3.47686	3.39359	3.96723
Н	5.01136	2.62640	3.48377

5.3.10 [P(μ-NTer)]₂·EtCHO (5)

112			
[P(μ-NTer)]2·EtCHO @	PBE-D3/def2-TZVP	- C1	Υ.
P -1.27295	-0.08081	-0.58628	Nor a
P 1.25382	0.03400	-0.30316	THEAD
0 -0.67932	-0.05579	-2.16583	AXT
N -0.13484	1.09594	0.05969	
N -0.00775	-1.15567	0.05912	A MAR
C 0.77113	0.02121	-2.16124	Well.
C -0.19790	2.49268	0.13444	
C 0.00249	-2.55444	-0.00530	L.
Н 1.15530	-0.91020	-2.60080	1
C 1.28028	1.22285	-2.94074	
C 0.90351	3.22853	0.65571	
C -1.37426	3.19807	-0.23365	
C -1.18725	-3.25971	0.32698	
C 1.16793	-3.29757	-0.33030	
Н 1.02122	2.15121	-2.40576	
Н 0.74528	1.26356	-3.90374	
C 2.78666	1.13774	-3.18778	
C 0.83028	4.62540	0.71902	
C 2.13001	2.57389	1.19090	
C -1.40241	4.59434	-0.14216	
C -2.62922	2.50572	-0.64624	
C -1.20680	-4.65617	0.24185	
C -2.41181	-2.58649	0.84960	
C 1.10178	-4.69555	-0.39165	
C 2.49402	-2.65683	-0.55861	
Н 3.15264	2.03399	-3.70741	
Н 3.03315	0.26153	-3.80506	
Н 3.34447	1.03776	-2.24565	
H 1.68726	5.16472	1.12702	
C -0.30551	5.32059	0.31428	
C 2.06751	1.82871	2.39187	
C 3.37288	2.75658	0.54561	
H -2.32234	5.10639	-0.43206	
C -2.99191	2.39444	-2.00649	
C -3.51065	2.04231	0.35854	
H -2.13196	-5.1/218	0.5068/	
C -0.07791	-5.38431	-0.12/05	
C -2.41955	-2.09018	2.1/291	
C -3.5880/	-2.53408	0.0/281	
H 2.01384	-5.24140	-0.041/3	
C 3.04539	-2.59612	-1.8582/	
	-2.20341	0.24030	
	0.40009	015/210	
C 3.23698	1 62500	2,202/9	
	2 16190	1 00700	
	3 583/6	-0 70701	
	1 77121	-0.70794	
C _2 00365	2 88977	-3 10619	
2.05505	2.00///	J. 1001)	

С	-4.71753	1.45076	-0.01620
С	-3.14499	2.14966	1.81380
Н	-0.11003	-6.47318	-0.17715
С	-3.60332	-1.55922	2.69263
С	-1.18048	-2.13781	3.02444
С	-4.75384	-2.00911	0.63936
С	-3.58817	-2.97793	-1.36581
С	4.30300	-2.01041	-2.03740
С	2.31596	-3.16729	-3.04680
c	4,51677	-1.65232	0.32336
Ċ	2.71186	-2.29147	1.94572
н	3,18303	0.69229	3,83379
C	4 47536	1 41627	2 26759
н	0 94372	1 24493	4 13556
н	0.11767	0 92116	2 59082
Ц	0.11707	2 57710	3 20303
н Ц	5 47252	2.37710	0 57177
п u	2 60040	2.29129	0.37177
п	2.00049	4.05454	-0.4/009
	2.01030	3.46932	-1.35480
н	4.38991	3.28854	-1.2/9/3
H	-4.4/093	1.6/3/9	-3.39058
C	-5.0/319	1.28579	-1.35801
н	-1.51065	3.76705	-2./9825
Н	-2.67730	3.14873	-3.99995
Н	-1.37970	2.10131	-3.38771
Н	-5.39524	1.09783	0.76324
Н	-2.81219	3.16382	2.07735
Н	-2.31589	1.46706	2.06115
Н	-3.99646	1.87864	2.45107
Н	-3.60262	-1.17792	3.71792
С	-4.78661	-1.52239	1.94808
Н	-0.39780	-1.48199	2.61365
Н	-0.75578	-3.15210	3.05882
Н	-1.39730	-1.81506	4.05105
Н	-5.66154	-1.96578	0.03170
Н	-4.57539	-2.82260	-1.82076
Н	-3.32099	-4.03866	-1.47530
Н	-2.85033	-2.40559	-1.95114
Н	4.71210	-1.93752	-3.04903
С	5.04868	-1.51902	-0.96207
H	1.22615	-3.06986	-2.95085
H	2,52212	-4.24448	-3.15290
Н	2.63754	-2.67880	-3.97706
н	5,09448	-1,29960	1,17968
н	3 51364	-2 15704	2 68320
н	2 21379	-3 25340	2.00520
Ц	1 9651/	-1 50071	2,12949
C C	5 70795	-1.50071	2,12,502
C	5.72705	0.05000	2.00100
	-0.55000	0.00522	-1./4000
C		-0.90033	2.54005
	0.3/133	-0.03013	-1.1/960
	0.10202	1.51043	3.01021
н	0.49383	0.65519	2.09320
Н	5.52542	-0.1225/	3.3/235
Н	-6.15297	-0.45550	-2.03075
Н	-6.83616	1.07669	-2.59825
Н	-7.06358	0.57042	-0.90492
Н	-5.88758	-0.03308	3.07170
Н	-6.47429	-1.68752	3.28977
Н	-6.82709	-0.82341	1.78088

н	6.23993	0.25796	-1.21412
Н	6.83501	-1.14275	-2.12705
Н	7.07483	-1.05233	-0.36309

5.3.11 TerNP]₂ · PhCHO · KOtBu (6)

131			
[P(µ-NTe	r)]2·PhCHO·KOtBu	<pre>@ PBE-D3/def2</pre>	-TZVP - C1
ĸ	-12.92317	-6.27583	-12,24264
P	-10 40696	-7 82836	-14 27279
D	11 20226	0 72007	12 /2/2/2
P	-11.09220	-9.75097	-12.45005
0	-10./1508	-6.26194	-13.65813
Ν	-11.89730	-8.61611	-13.92568
N	-12.19676	-8.67504	-11.18840
С	-14.62570	-7.60237	-14.43425
С	-14.43354	-6.30938	-14.97628
Ċ	-15,08630	-5.21668	-14.39246
c	-15 95115	-5 37181	-13 29966
C	16 12205	6 66072	10 79720
	10.13203	7 70105	12.70752
C	-15.48378	-/./8105	-13.33003
C	-13.03026	-6.68694	-9.2/364
С	-11.86746	-5.88930	-9.40168
С	-11.99485	-4.52471	-9.69073
С	-13.24741	-3.91059	-9.84141
С	-14.38634	-4.70717	-9.68106
с	-14.30007	-6.07861	-9.39420
Ċ	-9.58268	-8.55560	-12,71206
0	-10 19/2/	-9 82530	-12 510/1
C	0.02000	= 10125	14 00122
	-9.95909	-5.10125	-14.09152
C	-12.66976	-9.15135	-15.02156
C	-12.46279	-9.10322	-9.89813
С	-14.02333	-8.75939	-15.15908
С	-13.55111	-6.11146	-16.17797
Н	-14.93226	-4.22085	-14.81821
С	-16.67885	-4.18946	-12.71782
н	-16.79922	-6.80637	-11.93426
C	-15.68117	-9.13901	-12.71572
c	-12 91886	-8 13361	-8 93811
C	10 50010	6 50702	0 22102
	11 00701	2 02057	- 3.23132
н	-11.08/91	-3.92057	-9.79030
C	-13.35950	-2.43/20	-10.13268
н	-15.37476	-4.25185	-9.78805
С	-15.55826	-6.88835	-9.22596
Н	-9.85134	-7.86451	-11.89239
С	-8.09117	-8.68566	-12.79385
С	-9.73857	-5.08195	-15.60806
с	-8.59502	-5.11116	-13.36358
Ċ	-10 78079	-3 90084	-13 65294
C	-12 1/790	-10 10016	-15 9/096
C	_17 20000	-10 /2002	-0 20225
	14 05100	0 27704	16 10005
C	-14.85122	-9.37704	-10.10085
н	-12.53636	-6.49354	-15.99335
н	-13.93487	-6.66838	-17.04596
Н	-13.48285	-5.04924	-16.44759
Н	-16.00469	-3.33189	-12.57531
Н	-17.48796	-3.85650	-13.38677
Н	-17.12984	-4.43525	-11.74753
н	-16,49464	-9.12539	-11,97897
Н	-15,90302	-9,90073	-13 47552
н	-14 76074	-9 16165	-12 20202
C	12 25/10	9.40405	7 62054
L L	-13.23419	-0.4948/	-/.02954

н	-10.38287	-6.90682	-8.21428
н	-10.39705	-7.36066	-9.91800
н	-9.71071	-5.77961	-9.42769
н	-13.24237	-1.84233	-9.21280
н	-12.58093	-2.10252	-10.83369
н	-14.33984	-2.18657	-10.56133
н	-15 72531	-7 15137	-8 17092
	16 12570	6 22912	0.57507
	15 40524	-0.52812	-9.37397
H	-15.49534	-7.84120	-9.77067
C	-7.28036	-8.15400	-11./8300
C	-7.48673	-9.34576	-13.8/148
н	-9.13499	-5.93515	-15.94347
Н	-10.70479	-5.11695	-16.12913
Н	-9.22186	-4.15601	-15.89882
Н	-8.75209	-5.15889	-12.27645
н	-7.99353	-5.98220	-13.65879
н	-8.02024	-4,20250	-13,59512
н	-10 94666	-3 92316	-12 56494
н	-10 26927	-2 95970	-13 89798
	11 75/02	2.00228	14 16527
	12 00560	10 60207	16 00007
	-13.00500	-10.08287	-10.00007
C	-10./155/	-10.52657	-16.0513/
C	-12.64869	-10.75658	-8.07773
C	-11.64939	-11.56197	-10.14842
C	-14.35496	-10.35559	-16.96070
Н	-15.89235	-9.05522	-16.17871
Н	-13.59071	-7.71150	-6.94530
С	-13.14378	-9.80896	-7.18440
н	-7,74685	-7,64425	-10,93662
C	-5 89056	-8 27449	-11 84675
C	-6 09985	-9 /7198	-13 93525
	-0.05505 9 11062	0 76451	11 66001
	10.11002	-3.70431	17 57205
	-12.50241	-11.41945	-17.57565
	-10.250/2	-11.69166	-15.40689
C	-9.88819	-9.86916	-16.99400
н	-12.50305	-11.78913	-7.75032
C	-10.24283	-11.69445	-10.10062
C	-12.42645	-12.59012	-10.72505
Н	-15.00502	-10.83875	-17.69156
Н	-13.40284	-10.08160	-6.16099
Н	-5.27109	-7.85690	-11.05099
с	-5.29680	-8,93468	-12.92454
Н	-5.64341	-9.98870	-14.78145
C	-8 95407	-12 14744	-15 67972
C	-11 10321	-12 /70//	-1/ //713
C	8 60015	10 25964	17 22107
	10 20221	-10.33904	-17.25197
	-10.58521	-8.07590	-17.76419
C	-9.64229	-12.82916	-10.6516/
C	-9.40142	-10.62965	-9.45493
C	-11.78768	-13.72017	-11.24565
C	-13.91794	-12.45051	-10.83923
Н	-4.21089	-9.03147	-12.97641
Н	-8.59871	-13.04395	-15.16354
С	-8.11214	-11.50020	-16.58531
Н	-10.82792	-12.23994	-13.40885
н	-12,16965	-12,23964	-14.55304
н	-10 96120	-13 55111	-14 59268
Ц	_7 06200	-73.33111	-17 05200
	10 (5220		17 07004
П	-10.05320	-/.82691	-17.07904
Н	-9.61159	-8.30826	-18.45343
Н	-11.28419	-8.91702	-18.34808
н	-8.55223	-12.91449	-10.62366
C	-10.39635	-13.85830	-11.22420

	Н	-9.63699	-10.53183	-8.38386
	Н	-8.33194	-10.85223	-9.56390
	н	-9.59628	-9.65043	-9.91415
	н	-12.39672	-14.51018	-11.69471
	н	-14.37250	-12.09854	-9.90316
	Н	-14.15839	-11.70289	-11.61491
	Н	-14.38558	-13.40137	-11.12792
	С	-6.73188	-12.02821	-16.87455
	С	-9.72472	-15.05593	-11.84044
	Н	-6.25635	-12.42284	-15.96534
	Н	-6.76717	-12.85134	-17.60627
	Н	-6.08326	-11.24580	-17.29255
	н	-8.81779	-15.33850	-11.28705
	н	-10.39698	-15.92475	-11.86912
	н	-9.41827	-14.84291	-12.87823
1				

5.3.12 H₂

2 H2 @ PBE-D H H	3/def2-TZVP - D 0.00000 0.00000	infh 0.00000 0.00000	-0.37573 0.37573	6-0
2 H2 @ B3LYP H H	-D3/def2-TZVP - 0.00000 0.00000	Dinfh 0.00000 0.00000	-0.37203 0.37203	
2				

– H2 @	CCSD(T)/def2-TZVP	- Dinfh	
Η	0.00000	0.00000	-0.37130
Н	0.00000	0.00000	0.37130

5.3.13 HC≡CH

4				
HC≡CH (<pre>@ PBE-D3/def2-TZ\</pre>	/P - Dinfh		
С	0.00000	0.00000	-0.60381	
С	0.00000	0.00000	0.60381	
Н	0.0000	0.00000	1.67476	
н	0.00000	0.00000	-1.67476	
-				
4				
	W BSLIP-DS/UETZ-I		0 50051	
C	0.00000	0.00000	-0.59851	
C	0.00000	0.00000	0.59851	
н	0.00000	0.00000	1.66139	
Н	0.00000	0.00000	-1.66139	
4				
HC≡CH (<pre>@ CCSD(T)/def2-T2</pre>	ZVP - Dinfh		
С	0.00000	0.00000	-0.60491	
С	0.00000	0.00000	0.60491	
Н	0.00000	0.00000	1.67120	
н	0.00000	0.00000	-1.67120	

5.3.14 H₂C=CH₂

6				
H2C=CH2	@ PBE-D3/def2-	-TZVP – D2h		e e e e e e e e e e e e e e e e e e e
С	0.00000	0.00000	-0.66639	
С	0.00000	0.00000	0.66639	
Н	0.92885	0.00000	-1.24028	
Н	-0.92885	0.00000	-1.24028	• •
Н	0.92885	0.00000	1.24028	
Н	-0.92885	0.00000	1.24028	
C				
пис=спи	@ BSLIP-DS/def	$r_2 - r_2 v_P - D_2 r_1$		
С	0.00000	0.00000	-0.66246	
С	0.00000	0.00000	0.66246	
Н	0.92176	0.00000	-1.23211	
Н	-0.92176	0.00000	-1.23211	
Н	0.92176	0.00000	1.23211	
Н	-0.92176	0.00000	1.23211	

6			
H2C=CH	2 @ CCSD(T)/def2	2-TZVP - D2h	
С	0.00000	0.0000	-0.66851
С	0.00000	0.0000	0.66851
Н	0.92533	0.00000	-1.23633
Н	-0.92533	-0.0000	-1.23633
н	0.92533	0.00000	1.23633
н	-0.92533	-0.00000	1.23633

5.3.15 H₂C=O

.

4	
H2C=O @ PBE-D3/def2-TZVP - C2v	
C 0.00000 -0.00000 0.58428	
0 -0.00000 0.00000 -0.62374	
Н -0.00000 0.94758 1.17925	
Н -0.00000 -0.94758 1.17925	C .

4				
H2C=O @	B3LYP-D3/def2	-TZVP - C2v		
С	0.00000	0.00000	-0.60531	
0	0.00000	0.00000	0.60419	
Н	0.93934	0.00000	-1.18855	
н	-0.93934	0.00000	-1.18855	
4				
H2C=0 @	CCSD(T)/def2-	TZVP - C2v		
С	0.00000	0.00000	0.59943	
0	0.00000	0.00000	-0.59963	
Н	0.00000	0.93894	1.18735	
Н	0.00000	-0.93894	1.18735	

5.3.16 [P(µ-NH)]₂ (1H)

6 [P(N P H H	1-NH)]2 @ PBE-D3/de 1.09564 -1.09564 -0.00000 0.00000 2.10869 -2.10869	F2-TZVP - D2h 0.00000 -0.00000 -1.31771 1.31771 0.00000 -0.00000	0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000	
6 [P(N P P H H	1-NH)]2 @ B3LYP-D3/0 1.09097 -1.09097 0.00000 -0.00000 2.09640 -2.09640	def2-TZVP - D2h -0.00000 0.00000 1.30947 -1.30947 0.00000 -0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
6 H2 ((N P P H H	CCSD(T)/def2-TZVP 0.00000 -0.00000 1.31332 -1.31332 -0.00000 0.00000	- D2h 1.09163 -1.09163 -0.00000 0.00000 2.10024 -2.10024	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	

5.3.17 $[P(\mu-NH)]_2 \cdots H_2 (vdW)$

8				
[Ρ(μ-Ι	NH)]2•••H2 (vdW) (@ PBE-D3/def2-⊺	TZVP – C2v	
Ν	-0.00000	-1.09681	0.08477	
Ν	0.00000	1.09681	0.08477	
Р	-1.31191	0.00000	0.04139	
Р	1.31191	0.00000	0.04139	
н	0.00000	-2.10860	0.03850	
н	-0.00000	2.10860	0.03850	
н	-0.38248	0.00000	-2.48850	
н	0.38248	0.00000	-2.48850	U
0				
ð FD/				
[Ρ(μ-Ι	NH)]2···H2 (VdW) (@ B3LYP-D3/deta	2 - 12VP - C2V	
N	-0.00000	-1.09328	0.07959	
8 [P(µ-1 N	NH)]2···H2 (vdW) (-0.00000	@ B3LYP-D3/def2 -1.09328	2-TZVP - C2v 0.07959	

IN	-0.00000	-1.09520	0.0/959	
N	0.0000	1.09328	0.07959	
Р	-1.30363	-0.00000	0.04408	
Р	1.30363	0.00000	0.04408	
Н	0.00000	-2.09781	0.02854	
Н	0.00000	2.09781	0.02854	
Н	-0.37726	0.00000	-2.48893	
Н	0.37726	0.00000	-2.48893	

8					
[P(µ-N⊦	[P(μ-NH)]2···H2 (vdW) @ CCSD(T)/def2-TZVP - C2v				
N	0.00000	-1.09208	0.06700		
Ν	0.00000	1.09208	0.06700		
Р	-1.31044	0.00000	0.05450		
Р	1.31044	0.00000	0.05450		
Н	0.00000	-2.10042	0.06864		
Н	0.00000	2.10042	0.06864		
Н	-0.37381	0.0000	-2.67426		
Н	0.37381	0.0000	-2.67426		

5.3.18 [P(μ-NH)]₂…H₂ (TS)

8 [P(μ-NH)]2····H2 (TS) @ PBE-D3/def2-TZVP - C2v N -0.00000 -1.11197 0.27664 N 0.00000 1.11197 0.27664 P -1.27252 0.00000 -0.06995 P 1.27252 0.00000 -0.06995 H -0.00000 -2.09357 0.01459 H 0.49551 0.00000 -1.70943 H 0.49551 0.00000 -1.70943	
---	--

8			
[P(µ-NH)]2	•••H2 (TS)	@ B3LYP-D3/def2-	TZVP - C2v
Ν	0.00000	-1.10566	0.27008
Ν	0.00000	1.10566	0.27008
Р	-1.26638	0.00000	-0.06776
Р	1.26638	0.00000	-0.06776
Н	0.00000	-2.08575	0.03609
Н	0.00000	2.08575	0.03609
Н	-0.49843	0.00000	-1.70697
Н	0.49843	0.00000	-1.70697

8			
[P	(μ-NH)]2···H2 (TS) (<pre>@ CCSD(T)/def2-</pre>	TZVP - C2v
Ň	-0.00000	-1.10412	0.27414
Ν	0.00000	1.10412	0.27414
Р	-1.26876	0.00000	-0.06976
Р	1.26876	0.00000	-0.06976
Н	0.00000	-2.08592	0.03152
Н	0.00000	2.08592	0.03152
Н	-0.48710	0.00000	-1.69724
Н	0.48710	0.00000	-1.69724

5.3.19 $\label{eq:product} [P(\mu\text{-}NH)]_2\cdot H_2 \text{ (addition product)}$

8				
[P(µ-I	NH)]2∙H2 @ PBE-D3	/def2-TZVP - C2	2v	
Ν	0.00000	-1.12692	0.29094	T O
Ν	0.00000	1.12692	0.29094	
Р	-1.28626	0.00000	-0.07925	
Р	1.28626	0.00000	-0.07925	
Н	-0.00000	-2.08140	-0.06161	
Н	0.00000	2.08140	-0.06161	
Н	-1.12612	0.00000	-1.54602	
Н	1.12612	0.00000	-1.54602	

8					
[P(µ-N	[P(µ-NH)]2∙H2 @ B3LYP-D3/def2-TZVP - C2v				
Ν	0.00000	-1.11864	0.25278		
Ν	-0.00000	1.11864	0.25278		
Р	-1.29030	0.0000	-0.06346		
Р	1.29030	0.00000	-0.06346		
Н	0.00000	-2.08165	-0.04409		
Н	0.00000	2.08165	-0.04409		
Н	-1.22171	0.00000	-1.51864		
Н	1.22171	0.00000	-1.51864		

8							
[P(µ-NH)]2⋅H2 @ CCSD(T)/def2-TZVP - C2v							
Ν	-0.00000	-1.11895	0.27318				
Ν	0.00000	1.11895	0.27318				
Р	-1.28727	0.00000	-0.07246				
Р	1.28727	0.00000	-0.07246				
Н	0.00000	-2.07783	-0.04978				
Н	0.00000	2.07783	-0.04978				
Н	-1.18521	0.00000	-1.51982				
Н	1.18521	0.00000	-1.51982				

5.3.20 $[P(\mu-NH)]_2 \cdots HC \equiv CH (vdW)$

10				
[P(µ-1	NH)]2···HC≡CH (vd	W) @ PBE-D3/def	² -TZVP - Cs	
Ν	-1.09166	0.74147	0.00000	
Ν	1.10559	0.70602	0.00000	
Р	0.00442	0.66539	-1.30809	
Р	0.00442	0.66539	1.30809	
Н	-2.10338	0.78113	0.00000	• • • • • • • • • • • • • • • • • • •
Н	2.10036	0.51420	0.00000	
С	-0.01772	-2.40667	-0.60698	
С	-0.01772	-2.40667	0.60698	
Н	-0.01983	-2.47384	-1.67444	•
Н	-0.01983	-2.47384	1.67444	
10				
[Ρ(μ-I	NH)]2···HC≡CH (vd	W) @ B3LYP-D3/d	lef2-TZVP - Cs	
Ň	-1.08478	0.76815	0.00000	
Ν	1.09899	0.71025	0.00000	
Р	0.00588	0.70660	-1.30280	
Р	0.00588	0.70660	1.30280	
н	-2.08888	0.81065	0.00000	
Н	2.09493	0.57454	0.00000	
С	-0.02177	-2.52858	-0.60000	
С	-0.02177	-2.52858	0.60000	
Н	-0.02308	-2.54724	-1.66135	
н	-0.02308	-2.54724	1.66135	

10					
[Ρ(μ·	[P(μ-NH)]2···HC≡CH (vdW) @ CCSD(T)/def2-TZVP - Cs				
Ν	-1.08433	0.78329	0.00000		
Ν	1.10021	0.72923	0.00000		
Р	0.00728	0.73618	-1.30881		
Р	0.00728	0.73618	1.30881		
Н	-2.09128	0.83747	0.00000		
Н	2.10262	0.61818	0.00000		
С	-0.02620	-2.62048	-0.60581		
С	-0.02620	-2.62048	0.60581		
Н	-0.02760	-2.63332	-1.67167		
Н	-0.02760	-2.63332	1.67167		

5.3.21 [P(μ-NH)]₂…HC≡CH (TS)

$\begin{array}{cccc} 10 \\ [P(\mu-NH)]2\cdots HC\equiv CH \\ N & 0.00000 \\ N & 0.00000 \\ P & -1.30234 \\ P & 1.30234 \\ H & 0.00000 \\ H & 0.00000 \\ C & -0.61017 \\ C & 0.61017 \\ H & -1.66457 \\ H & 1.66457 \end{array}$	<pre>(TS) @ PBE-D3/def2-TZVP - C2v -1.10046 0.71447 1.10046 0.71447 0.00000 0.60780 0.00000 0.60780 -2.10539 0.59002 2.10539 0.59002 0.00000 -2.24644 0.00000 -2.42701 0.00000 -2.42701</pre>	
$\begin{array}{c} 10 \\ \left[P\left(\mu - NH \right) \right] 2 \cdots HC \equiv CH \\ N & 0.00000 \\ N & 0.00000 \\ P & -1.28806 \\ P & 1.28806 \\ H & 0.00000 \\ H & 0.00000 \\ H & 0.00000 \\ C & -0.60925 \\ C & 0.60925 \\ H & -1.62531 \\ H & 1.62531 \end{array}$	<pre>(TS) @ B3LYP-D3/def2-TZVP - C2v -1.09714 0.71387 1.09714 0.71387 0.00000 0.55802 0.00000 0.55802 -2.09002 0.55737 2.09002 0.55737 0.00000 -2.11459 0.00000 -2.42727 0.00000 -2.42727</pre>	
$\begin{array}{c} 10 \\ \left[P(\mu - NH) \right] 2 \cdots HC \equiv CH \\ N & -1.09788 \\ N & 1.09791 \\ P & 0.00002 \\ P & 0.00002 \\ H & -2.09319 \\ H & 2.09330 \\ C & -0.00006 \\ C & -0.00006 \\ H & -0.00004 \\ H & -0.00004 \\ \end{array}$	<pre>(TS) @ CCSD(T)/def2-TZVP - C2v 0.71263 0.00000 0.71245 0.00000 0.54180 -1.29060 0.54180 1.29060 0.54807 0.00000 0.54843 0.00000 -2.07137 -0.61654 -2.07137 0.61654 -2.41640 -1.62713 -2.41640 1.62713</pre>	

5.3.22 $[P(\mu-NH)]_2 \cdot HC \equiv CH$ (addition product)

10			
[P(μ-NH)]2·HC≡CH @ N -0.00000 N 0.00000 P -1.25437 P 1.25437	PBE-D3/def2-TZVP - -1.12705 1.12705 -0.00000 0.00000	C2v 0.82012 0.82012 0.28986 0.28986	
Н 0.00000	-2.05894	0.40082	
C -0.66725	-0.00000	-1.53612	
C 0.66725 H -1.33540	0.00000 -0.00000	-1.53612 -2.40002	
Н 1.33540	0.00000	-2.40002	
10			
[P(μ-NH)]2·HC≡CH @ N -0.00000	B3LYP-D3/def2-TZVP -1.12048	- C2v 0.80670	
N 0.00000 P -1.25131	1.12048 0.00000	0.80670 0.29203	
P 1.25131	0.00000	0.29203	
H 0.00000	-2.05453 2.05453	0.41557 0.41557	
C -0.66349	-0.00000	-1.52818	
H -1.32069	0.00000	-2.38948	
H 1.32069	0.00000	-2.38948	
10			
[P(µ-NH)]2•HC≡CH @	CCSD(T)/def2-TZVP	- C2v	
N 0.00000 N 0.00000	-1.11993 1.11993	0.81012 0.81012	
P -1.25139	0.00000	0.28890	
P 1.25139 H -0.00000	0.00000	0.28890 0.40337	
Н 0.00000	2.05214	0.40337	
C -0.67074	0.00000	-1.52305	
Н -1.32618	0.00000	-2.38981	
H 1.32618	0.00000	-2.38981	

5.3.23 $[P(\mu-NH)]_2 \cdots H_2C = CH_2 (vdW)$

12				
[P(µ	-NH)]2···H2C=CH2	(vdW) @ B3LYP-D3	3/def2-TZVP - C2v	
Ν	1.09259	-0.00000	0.75830	
Ν	-1.09259	0.00000	0.75830	
Р	0.0000	-1.30099	0.69616	<u> </u>
Р	0.0000	1.30099	0.69616	-
Н	2.09603	0.00000	0.70489	ø
Н	-2.09603	-0.00000	0.70489	
С	0.00000	-0.66730	-2.34094	
С	0.00000	0.66730	-2.34094	
н	0.91847	-1.23870	-2.37001	
Н	-0.91847	-1.23870	-2.37001	•
Н	0.91847	1.23870	-2.37001	
Н	-0.91847	1.23870	-2.37001	

12			
[P(µ-M	VH)]2···H2C=CH2	(vdW) @ CCSD(T)/	def2-TZVP - C2
Ν	1.09237	0.00000	0.77481
Ν	-1.09237	0.00000	0.77481
Р	0.00000	-1.30846	0.74290
Р	0.00000	1.30846	0.74290
Н	2.10059	0.00000	0.75468
Н	-2.10059	0.00000	0.75468
С	0.00000	-0.67028	-2.46621
С	0.00000	0.67028	-2.46621
Н	0.92348	-1.24056	-2.48142
Н	-0.92348	-1.24056	-2.48142
Н	0.92348	1.24056	-2.48142
Н	-0.92348	1.24056	-2.48142

5.3.24 [P(μ-NH)]₂···H₂C=CH₂ (TS)

-2.09766

0.00000

0.00000

0.92031

-0.92031

0.92031

-0.92031

-0.00000

-0.68342

0.68342

-1.24390

-1.24390

1.24390

1.24390

Н

C C

Н

H H H

_			
12 [P(., NU)]2 U2C-CU2			
	(15) @ B3LTP-D3/		6
N 1.09630	0.00000	0.74730	
N -1.09630	0.0000	0.74730	
P 0.00000	-1.29041	0.59075	•
P 0.00000	1.29041	0.59075	
Н 2.09347	0.00000	0.62207	6
Н -2.09347	0.00000	0.62207	
C 0.0000	-0.67852	-2.07874	
C 0.0000	0.67852	-2.07874	
н 0.91584	-1 24168	-2 19473	
Н _0 91584	-1 24168	-2 19473	•
Н 0.91584	1 2/168	_2 19473	
	1 2/169	2.10473	
H -0.91384	1.24100	-2.19473	
12			
$[P(\mu-NH)]2\cdots H2C=CH2$	(TS) @ CCSD(T)/c	lef2-TZVP - C2v	
N 1.09655	0.00000	0.74323	
N -1.09655	0.00000	0.74323	
P 0.0000	-1.29399	0.58034	
P 0.00000	1,29399	0.58034	
Н 2.09766	0 00000	0 62026	
2.05/00	0.00000	0.02020	

0.62026

-2.04995

-2.04995

-2.17714

-2.17714

-2.17714

-2.17714

5.3.25 $[P(\mu-NH)]_2 \cdot H_2C=CH_2$ (addition product)

$\begin{array}{c} 12 \\ [P(\mu-NH)]2\cdot H2C=CH2 \\ N & -0.00000 \\ N & 0.00000 \\ P & -1.26125 \\ P & 1.26125 \\ H & 0.00000 \\ H & 0.00000 \\ C & -0.76640 \\ C & 0.76640 \\ C & 0.76640 \\ H & -1.20306 \\ H & 1.20306 \\ H & 1.20306 \\ H & 1.20306 \\ \end{array}$	<pre>@ PBE-D3/def2-TZVP - -1.12267 1.12267 0.00000 0.00000 -2.07677 2.07677 0.00000 0.00000 -0.88598 0.88598 0.88598 0.88598 -0.88598</pre>	C2v 0.82553 0.32774 0.32774 0.46271 0.46271 -1.51178 -1.51178 -1.99560 -1.99560 -1.99560 -1.99560	
12 [P(μ-NH)]2·H2C=CH2	<pre>@ B3LYP-D3/def2-TZVP</pre>	- C2v	
N -0.00000	-1.11733	0.81039	
P -1.25734	0.00000	0.33050	
Р 1.25734	0.00000	0.33050 0.48023	
Н 0.00000	2.07337	0.48023	
C -0.76775	0.00000	-1.50399	
H -1.19596	-0.87979	-1.98788	
H -1.19596	0.87979	-1.98788	
H 1.19596 H 1.19596	-0.87979	-1.98788	
12 [P(u-NH)]2•H2C=CH2	@ CCSD(T)/def2-T7VP	- (2)	
N 0.00000	-1.11605	0.81369	
N 0.00000	1.11605	0.81369	
P 1.25787	0.00000	0.32763	
Н -0.00000	-2.07183	0.46941	
C -0.77069	0.00000	-1.49971	
C 0.77069	0.00000	-1.49971	
H -1.19//2 H -1.19772	-0.88377	-1.98687	
Н 1.19772	0.88377	-1.98687	
H 1.19772	-0.88377	-1.98687	

5.3.26 $[P(\mu-NH)]_2 \cdots H_2C=O (vdW)$

10				
[Ρ(μ-NH)]2···H2C=0 (vo	₩) @ CCSD(T)/de	ef2-TZVP - Cs	
N	0.73404	-0.06546	-1.09282	
Р	0.53539	-1.37200	-0.00015	
Р	0.82843	1.22459	0.00005	
Н	0.68715	-0.05076	-2.10026	
N	0.73308	-0.06552	1.09274	
С	-2.22316	-0.38825	0.00023	••••••
0	-2.04687	0.81906	0.00006	
Н	0.68643	-0.05095	2.10019	
Н	-2.34520	-0.96137	-0.93544	•
Н	-2.34465	-0.96118	0.93609	

5.3.27 [P(μ-NH)]₂···H₂C=O (TS)

10				
 [Ρ(μ-	NH)]2···H2C=0 (TS) @ CCSD(T)/det	F2-TZVP - Cs	
Ň	0.69983	0.18379	-1.09569	
Р	0.87888	-1.12875	-0.00002	
Р	0.27954	1.39400	-0.00001	
Н	0.58643	0.17072	-2.09812	
Ν	0.70000	0.18382	1.09566	
С	-1.76391	-1.06578	0.00004	
0	-1.99589	0.15134	0.00007	
Н	0.58616	0.17066	2.09804	
Н	-1.76175	-1.65143	-0.93340	•
Н	-1.76178	-1.65147	0.93346	

5.3.28 $[P(\mu-NH)]_2 \cdot H_2C=O$ (addition product)

10				
[P(μ-NH)]2•H	2C=0 @ PBE-D3	3/def2-TZVP - C	5	
N 0	.81994	0.22254	-1.11881	
P 0	.67586	-1.13572	0.00000	
P -0	.07335	1.23605	0.0000	
Н 0	.47207	0.12726	-2.07506	
N 0	.81994	0.22254	1.11881	
C -1	.22939	-1.04074	0.0000	
0 -1	.53042	0.37235	0.0000	
Н 0	.47207	0.12726	2.07506	
H -1	.65306	-1.51565	-0.89874	
H -1	.65306	-1.51565	0.89874	
-				
10				
[P(u-NH)]2·H	2C=0 @ B3LYP-	-D3/def2-TZVP -	Cs	
N 0	.80344	0.21919	-1.11287	
P 0	.67929	-1.13022	-0.00000	
P -0	.07539	1.23397	-0.00000	
Н 0	.48384	0.13051	-2.06970	
N 0	.80344	0.21919	1.11287	
C -1	.22203	-1.04190	-0.00000	
0 -1	.51193	0.37089	-0.00000	
Н 0	.48384	0.13051	2.06970	
Н -1	.64738	-1.50630	-0.89192	

10			
[P(µ-1	NH)]2•H2C=O @ CCS	SD(T)/def2-TZVP	- Cs
Ν	0.80701	0.22059	-1.11285
Р	0.67754	-1.13033	-0.00000
Р	-0.07834	1.23039	-0.00000
н	0.46987	0.12630	-2.06765
Ν	0.80701	0.22059	1.11285
С	-1.21642	-1.04109	-0.00000
0	-1.51160	0.37519	-0.00000
н	0.46987	0.12630	2.06765
н	-1.64669	-1.50391	-0.89477
Н	-1.64669	-1.50391	0.89477

6 References

- 1 J. Bresien, T. Kröger-Badge, S. Lochbrunner, D. Michalik, H. Müller, A. Schulz and E. Zander, *Chem. Sci.*, 2019, **10**, 3486–3493.
- 2 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176–2179.
- G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- 4 G. M. Sheldrick, *Acta Crystallogr. Sect. C Struct. Chem.*, 2015, **71**, 3–8.
- 5 G. M. Sheldrick, *SADABS Version 2*, University of Göttingen, Germany, 2004.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Peterson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Know, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrezewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision E.01*, Gaussian Inc., Wallingford CT, 2013.
- 7 F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73–78.
- 8 F. Neese, F. Wennmohs, U. Becker and C. Riplinger, *J. Chem. Phys.*, 2020, **152**, 224108.
- 9 F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, e1606.
- F. Weinhold and J. E. Carpenter, in *The Structure of Small Molecules and Ions*, eds.
 R. Naaman and Z. Vager, Springer, Boston, MA, 1988, pp. 227–236.
- 11 F. Weinhold and C. R. Landis, *Valency and Bonding*. A *Natural Bond Orbital Donor-Acceptor Perspective*, Cambridge University Press, 2005.
- E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, *NBO 6.0*, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
- 13 F. Weinhold, C. R. Landis and E. D. Glendening, *Int. Rev. Phys. Chem.*, 2016, **35**, 399–440.
- 14 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.

- 15 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396–1396.
- 16 S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200–1211.
- 17 C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789.
- 18 A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098–3100.
- 19 B. Miehlich, A. Savin, H. Stoll and H. Preuss, *Chem. Phys. Lett.*, 1989, **157**, 200–206.
- 20 A. D. Becke, J. Chem. Phys., 1993, **98**, 5648–5652.
- 21 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623–11627.
- 22 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, **132**, 154104.
- 23 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, **32**, 1456–1465.
- 24 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–305.
- 25 F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057.
- 26 F. Neese, F. Wennmohs, A. Hansen and U. Becker, *Chem. Phys.*, 2009, **356**, 98–109.
- 27 C. Riplinger and F. Neese, J. Chem. Phys., 2013, 138, 034106.
- 28 D. G. Liakos, M. Sparta, M. K. Kesharwani, J. M. L. Martin and F. Neese, J. Chem. Theory Comput., 2015, **11**, 1525–1539.
- 29 C. Riplinger, P. Pinski, U. Becker, E. F. Valeev and F. Neese, *J. Chem. Phys.*, 2016, **144**, 024109.
- 30 D. G. Liakos, Y. Guo and F. Neese, J. Phys. Chem. A, 2020, **124**, 90–100.
- 31 A. Hellweg, C. Hättig, S. Höfener and W. Klopper, *Theor. Chem. Acc.*, 2007, **117**, 587–597.
- 32 T. J. Lee and P. R. Taylor, Int. J. Quantum Chem., 1989, **36**, 199–207.
- 33 C. J. Cramer, *Essentials of Computational Chemistry: Theories and Models*, John Wiley & Sons, Ltd, Chichester, UK, 2004.
- 34 J. Čížek, in *Advances in Chemical Physics*, eds. R. LeFebvre and C. Moser, John Wiley & Sons, 1969, vol. 14, pp. 35–89.
- 35 R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem., 1978, **14**, 561–581.
- 36 G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910–1918.
- 37 J. A. Pople, M. Head-Gordon and K. Raghavachari, J. Chem. Phys., 1987, **87**, 5968– 5975.
- 38 G. E. Scuseria, C. L. Janssen and H. F. Schaefer, *J. Chem. Phys.*, 1988, **89**, 7382–7387.
- 39 G. E. Scuseria and H. F. Schaefer, J. Chem. Phys., 1989, **90**, 3700–3703.
- 40 G. Mills, H. Jónsson and G. K. Schenter, *Surf. Sci.*, 1995, **324**, 305–337.

- 41 H. Jónsson, G. Mills and K. W. Jacobsen, in *Classical and Quantum Dynamics in Condensed Phase Simulations*, World Scientific, 1998, pp. 385–404.
- 42 G. Henkelman and H. Jónsson, J. Chem. Phys., 2000, **113**, 9978–9985.
- 43 G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys., 2000, **113**, 9901– 9904.
- 44 E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila and H. Jónsson, *Comput. Phys. Commun.*, 2016, **205**, 13–21.
- 45 V. Ásgeirsson, B. O. Birgisson, R. Bjornsson, U. Becker, F. Neese, C. Riplinger and H. Jónsson, J. Chem. Theory Comput., 2021, **17**, 4929–4945.
- 46 J. Baker, J. Comput. Chem., 1986, **7**, 385–395.
- 47 H. B. Schlegel, in *Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry Part I, Volume 67*, ed. K. P. Lawley, John Wiley & Sons, 1987, pp. 249–286.
- 48 H. B. Schlegel, in *Modern Electronic Structure Theory*, ed. D. R. Yarkony, World Scientific, 1995, pp. 459–500.
- 49 F. Eckert, P. Pulay and H.-J. Werner, J. Comput. Chem., 1997, **18**, 1473–1483.