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Experimental Procedure

1. UV-Vis and Fluorescence Study

The spectral response of UV-Visible and fluorescence studies of L,, L, Ru-1 and Ru-2 were
conducted in 10% DMSO solution. Fluorescence quantum yield (¢) was estimated by using
the comparative William's method in water and MTT media [1]. Tryptophan was used as a
reference compound (0.16 in 0.1 M NaOH), excited at 275 nm and emission was recorded at
353 nm. Both absorption and emission spectra of reference and lead compound (3 x 10 M)
were used. The gradients of the plots are proportional to the quantum yield (¢) of the studied

system. The quantum yield value was calculated according to the equation (i):

Where, ¢, |, OD and 7related to quantum yield, peak area, absorbance at A, refractive index

of solvent.

2. Stability Study

The stability of Ly, L, Ru-1 and Ru-2 were established in water, MTT and GSH medium.

3. Electrolytic Study

To know the ionic nature of the lead compound, molar conductivity of ligand and Ru(ll)
complexes were performed in water, DMSO and DMF media. The molar conductivity of each
solution was measured using a conductivity-TDS meter-307 (Systronics, India) with cell

constant 1.0 cm™ [2] and Ay was calculated using the formula (ii).

K x 1000 (i)
= ii
M C

Where, K= specific conductivity and C= concentration of solute.

4. DNA Binding Study

4.1 Electronic Absorption Spectra



The DNA binding experiment was performed with L;, L,, Ru-1 and Ru-2 (3 x10> M) in Tris-HCI
buffer (pH 7.4) in water medium [3]. The concentration of CT-DNA was calculated
spectrophotometrically at 260 nm using its molar absorption coefficient value 6600 L. M1
cm™. Primarily, an equivalent amount of DNA (1 mL, 2.87 x 10* M) was added to both
cuvettes (sample and reference) and chronologically added ligands to get absorption spectra
of DNA-ligand interaction. Initially, lead compound was equilibrated with CT-DNA for about 5
min. The intrinsic DNA binding constant (K,) was calculated using the equation (iii). Also, the

UV-visible absorbance spectra of ligand were taken in agueous medium.

DNA DNA 1

= + (iii)
(eq_€p) (gp-€p) Ky(eg—p)

Where g, & and g, are the apparent extinction coefficient for the complex, extinction
coefficient of the complex in its free form and extinction coefficient of the complex when fully
bound to DNA respectively [4]. The linear plot has been made by plotting [DNA]/(&,-€f) vs.
[DNA] using Origin Lab, version 8.5. The K}, value of lead compound was calculated from the

ratio of the slope and intercept.

4.2 Relative Viscosity Study

Viscosity study has been performed to find out the mode of binding interaction of complex
with DNA using Ostwald’s capillary viscometer [5-7]. Each experiment was executed for three
times, and the average flow time was documented. The data was plotted as (n/no)*3 vs.
[complex]/[DNA], where n and ngrelates to viscosity of DNA in the presence and absence of
the ligand respectively. The viscosity of DNA was calculated using the formula (iv), where t

and tgsignifies the efflux time of DNA and PBS buffer solution respectively.

(t-tp)

ty

No (iv)

4.3 EtBr Displacement Assay

The competitive binding was performed to know the mechanism of binding between the lead
compounds with DNA-bound EtBr [8]. Upon interacting EtBr with DNA, an intense
fluorescence emission is taken place owing to the formation of the EtBr-DNA adduct. Under

such environment upon adding lead compound to this environment, the lead compound



undergo intercalation in DNA and subsequently, it displaces EtBr from DNA, due to this there
is reduction in fluorescence. The apparent binding constant of the ligand to CT-DNA was
calculated from the measurements of fluorescence intensity. EtBr exhibits weak fluorescence
in Tris-buffer owing to quenching of free EtBr by solvent molecules. But in presence of DNA,
emission intensity dramatically enhanced because of its intercalative binding affinity which
revealed that substantial decrease fluorescence intensity. The interaction tendency of the
lead compound with DNA was measured from the fall in emission intensity. The K,,, data

obtained from the following equation (v)

K app % [complex]sy = Kg.p, X [EtBT] v)

where [complex]s, signifies the concentration of the complex at 50% quenching of DNA-
bound EtBr emission intensity, Kg5=1.0 x 10’ M2, binding constant of EtBr and concentration
of EtBr is used 8 uM. Ky is Stern-Volmer quenching constant [9]. The value of K, was

calculated using equation (vi).

10
T=1+Kgl0] (v

Where Iy and | are emission intensities of EtBr-DNA in the absence and presence of compound

of concentration [Q].
4.4 DNA Cleaving Study

Agarose gel electrophoresis techniques are used to find out the ability of lead compound to
damage the DNA double helix. In the beginning, approximately 200 ng of plasmid DNA (~1
kb) was mixed in 1mL of PBS buffer solution. Later, equal amount of variable concentration
of ligand was added into the mixture and the solution was incubated for about 1h at 37° C.
The mixture was mixed DNA loading dye (bromophenol blue (25%), xylene cyanol (0.25%),
and glycerol (30%) and loaded on 1% agarose gel containing EtBr (1.0 mg/ml). Here plasmid
DNA incubated without any compound was used as control. Electrophoresis was carried out

at 50V for 2 h. At last, the gel image was taken by using Bio-Rad GelDoc instrument [10].

5. Protein Binding Study

5.1 Emission study



In order to calculate the binding interaction between the lead compounds and protein,
fluorescence emission technique has been used [11]. In order to investigate the effect of lead
compounds with BSA, the fluorescence spectra were performed in Tris-HCI/NaCl buffer (TBS,
pH 7.4). Initially, 66 mg of BSA was taken in a 2 mL eppendorf and 1 mL of Tris-HCI/NaCl buffer
was added followed calculate the concentration of the BSA protein. The resulting stock
concentration is 1 x 103 M, simultaneously, ligand solution was made to carry out the
titration progress. Firstly, 2 mL of buffer transferred to cuvette which contain BSA protein (2
x 10> M) and sequentially increasing the concentration of ligand to get decrease emission
spectra which revealed that BSA-ligand interaction. Before each measurement, sample was
equilibrated with BSA for about 5 min. The quenching of the emission at 340 nm (A, 295 nm)
was recorded. The quenching constant (Kgsa) was calculated by using Stern-Volmer equation

(vii).

I
7(’: 1+ Ko [Q=1+K,1o[Q]  (wid)

K
K,=——r  (vii)
To
I,-1
log =log K + nlog[Q] (ix)

I

Where, Iy and / are fluorescence intensities of BSA in the absence and presence of quencher
of concentration [Q] while Ksy, k; and 1 are related to quenching constant, quenching rate
constant and average lifetime of the tryptophan (1x102 s), while K and n signifies binding

constant and number of binding sites calculated by using Scatchard equation (ix) [12].
5.2 Isothermal titration calorimetry (ITC)

ITC experiments have been executed to find out the interaction of the complexes Ru-1 (0.09
M) and Ru-2 (0.09 M) with BSA (0.009 M) and CT-DNA (0.009M) in DMSO:water (0.5:9.5,v/v)
at 23°C using the MicroCal iTC200 system. The instrument consists of a reference cell that has
heat capacity like the sample cell solution. The reference cell was filled with water. The
sample cell before being used for experiment was thoroughly washed with DMSO:water
(0.5:9.5,v/v). The sample cell was loaded with BSA in which the heat released by dilution of
BSA in the cell is negligible. Ru-I (0.09M) or Ru-2 (0.09M) was loaded into the 40 uL syringe



and titrated with BSA (0.009M) solution. More Ru(ll) complex solution is added and process
repeated until no differences in heat are recorded and the area under curves integrated to
yield heat transferred. A similar experiment was carried out using Ru(ll) complex (0.09 M)
with CT-DNA (0.009M) solution. Titration was performed by using the automated syringe
filled with the Ru(ll)-complex solution with continuous stirring at 500 rpm throughout the
experiments. Injections were initiated (1 plL) after baseline stability was established. A
titration experiment consisted of 30 consecutive injections of 5 uL volume and 10 min
duration each, with a filter period of 10 s. The reference power was set at 10 pcal/s with an
initial delay of 60 s. Control experiments were performed by titrating Ru(ll) complex into a 5%
aqueous DMSO media to ignore the contribution of solvent media interaction. The resulting data
were fitted by a sequential binding site model using MicroCal ORIGIN software supplied with
the instrument to give stoichiometry (N), binding constant (Ka) enthalpy change (AH) and entropy

change (AS). The change in free energy was calculated using Gibb’s free energy equation (AG= AH-

TAS) [13].
7. In-Vitro Cytotoxicity

It is based on the reduction of the yellow tetrazolium salt (3-[4, 5-dimethyl thiazol-2-yl]-2, 5
diphenyl tetrazolium bromide) by mitochondrial dehydrogenases to form a blue MTT
formazan in viable cells [14-17]. Each compound was dissolved in 0.1% DMSO and then serial
diluted with DMEM medium containing 10% Fetal calf serum. Different cell lines such as Hela,
MCF-7, MDA-MB-231 and HEK-293 were used in this assay. The cisplatin was used as a
positive control. The entire cells were cultured in 100 pL of a growth medium in 96-well plates
and incubated at 37°C under 5% CO, overnight. After incubation time, the cultured cells were
exposed to different concentrations of compounds (9-300 pM). Control cells cultured with an
equivalent amount of DMSO alone. After 24 h of incubation time, 100 uL of MTT reagent (1
mg/mL) was added in each culture wells and incubated for 3 h at 37°C. After 3 h, the medium
was discarded and formazan crystals formed in live cells were dissolved in 300 pl DMSO and
subsequently quantitated by measuring absorbance using ELISA reader at 620 nm. The
experiment was also conducted in triplicate. The growth inhibition percentage was calculated
using the formula: percentage growth inhibition = 100-[(ADx100)/AB], where AD represents
measured absorbance in wells which consists samples and AB represents absorbance of the

blank wells.



8. Octanol water partition coefficients

The log P of lead compound was determined via the conventional shake-flask method [18]. A
fixed amount of lead compound was suspended in water (pre-saturated with n-octanol) and
shaken for 48 h on an orbital shaker. To allow phase separation, the solution was centrifuged
for 10 min at 3000 rpm. Then the amount of lead compound present in the saturated aqueous

solution was measured by UV-Visible spectrophotometer.

9. Drug-likeness Studies

All the compounds were checked for their drug likeness by generating data pertaining to
molecular weight, number of hydrogen bond donors/acceptors, polar surface area, number
of rotatable bonds, partition coefficient, etc. The study was carried out using an online web-
server named Swiss ADME (Molecular modelling group, Swiss Institute of Bioinformatics,

Lausanne, Switzerland) [19].

10. ADME Profiling

Absorption, Distribution, Metabolism, Excretion (ADME) prediction study helps in developing
safest drug in a faster manner. In the current study, as a part of secondary screening, this

ADME profiling was conducted [20].
11. Molecular Docking and Quantum Computational

The lead molecules were exposed to molecular docking study using Autodock vina [21],
covering Lamarckian genetic algorithm (LGA) to calculate binding affinities of several
conformers and AutoDock Tools (ADT) to implement the operation and consequent
calculations. With the current computational resources, such a huge docking calculation with
the large experimental HS-DNA prompted the process to opt a smaller section of DNA with
the sequence d(CCGTCGACGG) (PDB entry: 423D, a sequence commonly used in
oligodeoxynucleotide study) [22] obtained from Protein Data Bank [23] with resolution of 1.60
A was built using Autodock4 package to expedite over DNA-binding properties of all the
ligands and their respective Ru-complexes considered for the present study. The 2D
structures of (L;, Ly, Ru-1, and Ru-2) drawn using ACD ChemSketch Freeware, from which all
the corresponding coordinates were obtained and subsequently transformed into PDB form

through a toolbox that can speak several languages of chemical data [24]. Separate files for



both DNA and lead molecules were made using AutoDock Tools. Each atom in both target and
lead compound was fed with Gasteiger charges. Prior docking, the binding site was assigned
developing a grid box with a spacing of 1 A and 26 x 26 x 26 number of points was used in X,
y and z directions. The target was further developed to pdbgt for the final operation. With an
exhaustiveness of 8, Autodock generated nine significant conformers for each ligand and their
respective Ru-complexes. The necessary calculations were done in a Dell system (3.4 GHz
processor, 4GB RAM, 1 TB Hard disk operating system). The scoring functions obtained out of
the process were screened to fix the conformer lying close to the active site residues and
subsequently analysed for its binding pattern. PyMOL (The PyMOL Molecular Graphics
System, Version 1.3, Schrodinger, LLC) molecular graphics program was used to study the

orientation of each conformer within the active site.

In order to rationalize the experimental protein binding study, molecular docking study was
performed. The crystallographic structure of BSA with the PDB ID: 4F5S [25] was collected
from fetched from the protein data bank. The additional thing done during the protein
preparation was the exclusion of water molecule in order to avoid the unwanted interaction
with the docked conformers. The grid size considered for the protein is 30, 26 and 24 along
the X, Y and Z axes with a spacing of 1 A encircling all the putative active site residues of which
the most prominent are Trp213 and Trp134 [26]. The working principle and the output

parameters were as similar as the above-mentioned DNA docking.

The DFT (density functional theory) analysis of lead molecules was performed using Gaussian
09 and visualized through Gauss view 6.0. The structural coordinates of the lead compounds
were optimized using B3LYP/6—-31 G (d,p) level basis set without any symmetrical constraints
[27]. The standard basis set 6-311G (d,p) was assigned for lighter elements such as C, H, N, Cl
and LanlL2DZ effective core potential for Ru atom [28]. All geometry has been optimized to
zero negative vibration frequency represent the local minima associated with positive Eigen
values. Vertical electronic excitations based on B3LYP will be obtained with the time-
dependent density functional theory (TD-DFT) theory in the gas phase using the ground state

optimized geometry [29].
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Table S1. Molecular docking studies of L,, L,, Ru-1 and Ru-2 with DNA and BSA

Binding free Vdw_hb_desolv . . Total Torsional Unbound
. Electrostatic internal system’s
Ligand energy energy energy (AGue) energy free energy energy
(AGhpinding)® (AGyaw:hbedesolv) (AGyorn) (AGr) (AGy.)
DNA
L, -7.7 -7.2 -0.91 -0.47 0.41 -0.47
L, -8.6 -8.2 -1.03 -0.58 0.62 -0.58
Ru-1 -8.0 -7.3 -1.11 -0.65 0.41 -0.65
Ru-2 -8.1 -7.4 -1.03 -0.63 0.33 -0.63
BSA
Ly -10.3 -9.6 -0.97 -0.54 0.27 -0.54
L, -10.6 -9.8 -1.01 -0.67 0.21 -0.67
Ru-1 -8.9 -8.3 -0.92 -0.53 0.32 -0.53
Ru-2 -8.7 -8.1 -1.07 -0.59 0.43 -0.59

Table S2. In silico prediction of

physicochemical properties, toxicology, pharmacokinetics, drug-

likeness of L,, L, Ru-1 and Ru-2

Properties/Ligand | L, L, Ru-1 Ru-2 Doxorubicin
Toxicology
Toxic No Yes No No No
Molecular Weight 299.37 349.43 570.12 620.14 543.52
(gm/mol)
TPSA (A72) 37.28 37.28 27.63 27.63 206.07
Hydrogen Donor 1 1 6
Hydrogen acceptor 2 1 12
Consensus 3.31 4.3 4.7 5.45 1.17
Log P
Pharmacokinetics
Gl absorption High Low High High Low
BBB permeant Yes No No No No
Log Kp (skin -4.91 cm/s -6.34cm/s -7.97 cm/s -2.99 cm/S -8.71cm/s
permeation)
P-gp substrate Yes Yes Yes Yes Yes
CYP1A2 inhibitor Yes Yes No No No
Drug-likeness
Lipinski Yes 1 2 2 No; 3
violations:
MW>500,
N or 0>10,
NH or OH>5
Ghose Yes Yes Yes No No
Veber No No No No No
Bioavailability 0.55 0.17 0.55 0.55 0.17
Score




Table S3. Experimentally observed and TD-DFT calculated electronic transitions of L,, L,, Ru-1 and

Ru-2.
Lead Experimental Theoretical
compou | A_.. € Oscillator o, . —
nds (hm) | (L M-Lem™) Amax (nm) strength (£) Transition Orbital Contribution
L, 264 1 ax10° 259.89 0.1477 So=> Sy 75% H-2 > L & 6.8% H - L+5
' 337.9 0.4514 So>S: 98.6% H > L
36.86 % H-1 > L+1, 15.63% H >
250.17 0.3679 So=>S
L. 261 4.1x10% 07514 || 148 12.73% of H-6 >L
327.45 0.2638 So>S, 95% H -> L+1
33.95% H-2 > L+4, 26.37% H-4 >
300.76 0.0626 So=>S
Ru-1 331 5.3x10° 0758 || 118 18.82%H-1 S L+4
' 55% H-2 > L, 14.63% H-1 > L &
398.23 0.0858 So=>S
025 | g 14% H-3>L
48.57% H-1 > L+3 & 7.70% H-1
289.92 0.196 So = Sas L3 %H1= %H1=
Ru-2 263 7.0:10° 25.41% H-1 - L+1, 19.72% H-2 >
. o M- , . o M-
391.34 0.1575 So=>S
025 | 438 16.57% H-3 SL

*H - HOMO, L - LUMO orbitals
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