**Table S1.** Spectroscopic parameters for  $Cu^{2+}$  complexes at 298K in aqueous solution. Metal/peptide ratio of 1:1.1. Standard deviation on the last significant figure is given in parentheses. Most abundant complex form at precise pH is bold.

|                                                         |      | UV-Vis     |                                          | CD                               |                                                             | EPR                                              |      |                                     |
|---------------------------------------------------------|------|------------|------------------------------------------|----------------------------------|-------------------------------------------------------------|--------------------------------------------------|------|-------------------------------------|
| Species                                                 | рН   | λ<br>[nm]  | Е<br>[M <sup>-1</sup> cm <sup>-1</sup> ] | Λ<br>[nm]                        | $\Delta \mathcal{E}$<br>[M <sup>-1</sup> cm <sup>-1</sup> ] | $egin{array}{c} A_{\parallel} \ [G] \end{array}$ | g_   | Proposed<br>donors                  |
| -                                                       | 2.07 | 800        | 20.50                                    | 212.3<br>236                     | 3.45<br>-27.68                                              | -                                                | -    | -                                   |
| [CuH <sub>2</sub> L]                                    | 3.00 | 800        | 24.52                                    | 212.3<br>236                     | 3.05<br>-26.90                                              | 121.3                                            | 2.41 | -                                   |
| [CuH <sub>2</sub> L]<br>[CuHL]                          | 3.99 | 800<br>737 | 24.25<br>21.91                           | 212.3<br>236                     | 2.33<br>-23.74                                              | 120.1                                            | 2.42 | -                                   |
| [CuH <sub>2</sub> L]<br>[CuHL]<br>[CuL]                 | 5.01 | 716        | 39.98                                    | 236                              | -10.96                                                      | 157.77                                           | 2.30 | N <sub>im</sub> , COO <sup>-</sup>  |
| [CuHL]<br>[CuL]<br>[CuH <sub>1</sub> L]                 | 6.08 | 647        | 68.09                                    | -                                | -                                                           | 170.90                                           | 2.27 | 2N <sub>im</sub> , COO <sup>-</sup> |
| [CuHL]<br>[CuL]<br>[CuH <sub>.1</sub> L]                | 7.00 | 635.5      | 83.58                                    | 257.1<br>525.7                   | 34.33<br>0.83                                               | 178.10                                           | 2.26 | 3N <sub>im</sub> COO-               |
| [CuL]<br>[CuH <sub>-1</sub> L]<br>[CuH <sub>-2</sub> L] | 8.02 | 619.5      | 93.08                                    | 257.1<br>525.7                   | 40.68<br>2.33                                               | 185.01                                           | 2.23 | 3N <sub>im</sub> N <sup>-</sup>     |
| [CuH <sub>.1</sub> L]<br>[CuH <sub>-2</sub> L]          | 9.02 | 597        | 97.68                                    | 262.8<br>316.8<br>525.7<br>609.9 | 42.46<br>7.075<br>3.20<br>4.97                              | 189.42                                           | 2.22 | 3N <sub>im</sub> , N <sup>-</sup>   |

## Bacterial M10 metallopeptidase as a medicinal target coordination chemistry of possible metal-based inhibition

Paulina Potok,<sup>1</sup> Sławomir Potocki<sup>1\*</sup>

slawomir.potocki@chem.uni.wroc.pl

<sup>1</sup> Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie St., 50-383 Wroclaw, Poland

|                       | 10.07 | 572.5 | 110.10 | 262.9 | 20 (2  | 100 56 | 2.22 | 2NI NI-                            |
|-----------------------|-------|-------|--------|-------|--------|--------|------|------------------------------------|
|                       | 10.07 | 572.5 | 110.18 | 202.8 | 38.03  | 189.30 | 2.22 | $3N_{im}$ , N                      |
| [CuH_3L]              |       |       |        | 316.8 | 13.83  |        |      |                                    |
|                       |       |       |        | 488.3 | -4.05  |        |      |                                    |
|                       |       |       |        | 609.9 | 7.41   |        |      |                                    |
| [CuH_2L]              | 11.00 | 538.5 | 127.13 | 262.8 | 32.43  | 201.99 | 2.19 | 2N <sub>im</sub> , 2N <sup>-</sup> |
| [CuH <sub>-3</sub> L] |       |       |        | 316.8 | 17.65  |        |      |                                    |
|                       |       |       |        | 488.3 | -7.88  |        |      |                                    |
|                       |       |       |        | 609.9 | 8.88   |        |      |                                    |
| [CuH <sub>-3</sub> L] | 12.07 | 526.5 | 136.33 | 262.8 | 28.61  |        |      | N <sub>im</sub> , 3N <sup>-</sup>  |
|                       |       |       |        | 316.8 | 17.53  |        |      |                                    |
|                       |       |       |        | 488.3 | -10.35 |        |      |                                    |
|                       |       |       |        | 609.9 | 9.48   |        |      |                                    |
|                       |       |       |        |       |        |        |      |                                    |



**Figure S1.** Mass spectrum for the Cu(II)-Ac-EHELGHAIGLDHT-NH<sub>2</sub> complex (metal to ligand molar ratio 1:1, [Cu(II)] = 2 mM). Experimental and simulated spectra for the  $[CuL]^{3+}$  molecular ion with m/z 511.215 are presented in the right corner.



**Figure S2.** EPR spectra performed for the Cu(II)-Ac-EHELGHAIGLDHT-NH<sub>2</sub> complex, 5.00-11.00 pH range.



**Figure S3.** UV-Vis region for Cu(II) complexes of the Ac-EHELGHAIGLDHT-NH<sub>2</sub> peptide. Cu(II)/peptide ratio = 1:1.1



**Figure S4.** Mass spectrum for the Zn(II)-Ac-EHELGHAIGLDHT-NH<sub>2</sub> complex (metal to ligand molar ratio 1:1, [Zn(II)] = 2 mM). Experimental and simulated spectra for the  $[ZnL]^{3+}$  molecular ion with m/z 511.539 are presented in the right corner.



**Figure S5.** Mass spectrum for the Ni(II)-Ac-EHELGHAIGLDHT-NH<sub>2</sub> complex (metal to ligand molar ratio 1:1, [Ni(II)] = 2 mM). Experimental and simulated spectra for the  $[NiL]^{2+}$  molecular ion with m/z 763.811 are presented in the right corner.



**Figure S6.** Competition plots showing the comparison of thermodynamic stability between complexes of Zn(II), Cu(II), and Ni(II) ions with ligand L - Ac-EHELGHAIGLDHT-NH2 peptide. The molar ratio for ligand and metal ions L : Zn(II) : Cu(II) : Ni(II) are 224:21:1.