Supplementary information

Hierarchical Microtubes Constructed by Fe-doped MoS₂ nanosheets for Biosensing Application

Zhiwen Shen^a, Suping Han^{b*}, Jingli Xu^a, Xue-Bo Yin^a, Min Zhang^{a*}

^aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China. zhangmin@sues.edu.cn

^bDepartment of Pharmacy, Shandong Medical College, No. 5460 Erhuannanlu Road, Jinan 250002, China, supinghan@163.com

Fig. S1 SEM images of as-synthesized products with different mass ratios of MoO3@FeOOH to ammonium tetrathiomolybdate. (a)60mg:10mg;(b)60mg:30mg

Fig. S3. (A) The pH dependence of the peroxidase-like activity. (B) The temperature (20 °C-50 °C) is dependent on the peroxidase-like activity. (C) The material concentration (5-45 μ g/mL) depends on the peroxidase-like activity. (D) The reaction time (2 min-12 min) is dependent on the peroxidase-like activity. The error bars shown represent the standard error derived from three repeated measurements.

Table S1 The apparent kinetic parameters (Km and Vmax) of Fe-MoS₂ catalysts were compared with other simulated enzymes.

Enzyme mimics	K _m (mM)		V_{max} (10 ⁻⁸ Ms ⁻¹)		Rof
	тмв	H ₂ O ₂	ТМВ	H ₂ O ₂	
Fe-MoS ₂	0.0164	0.046	9.44	4.97	This work
HRP	0.434	3.7	10	8.71	1
Fe ₃ O ₄ nanoparticles	0.098	3.44	154	9.78	2
MoS ₂	2.668	1.809	1.501	1.642	3
Fe ₃ O ₄ /MoS ₂	0.806	0.238	141.3	37.8	4
MoS ₂ -Pt ₇₄ Ag ₂₆	0.386	25.71	3.22	7.29	5
MoS ₂ -PPy-Pd	0.93	6.4	_	-	6
Fe-MoS ₂	0.387	0.0638	950	438.5	7

Detection method	LR(μM)	LOD(µM)	Ref
Colorimetric	1-30	0.577	7
Colorimetric	2.0-300.0	0.5	8
Colorimetric	1.0-50.0	0.943	9
Electrochemical	1.0-500	0.5	10
Electrochemical	0.1-2.75	0.28	11
Electrochemical	0.2-4	0.32	12
	Detection method Colorimetric Colorimetric Colorimetric Electrochemical Electrochemical Electrochemical	Detection methodLR(μM)Colorimetric1-30Colorimetric2.0-300.0Colorimetric1.0-50.0Electrochemical1.0-500Electrochemical0.1-2.75Electrochemical0.2-4	Detection methodLR(μM)LOD(μM)Colorimetric1-300.577Colorimetric2.0-300.00.5Colorimetric1.0-50.00.943Electrochemical1.0-5000.5Electrochemical0.1-2.750.28Electrochemical0.2-40.32

Table S2 Comparison of analysis from various reports with different chosen materials and their respective LOD, and linear range values toward the detection of GSH

References

- 1. N. R. Nirala, S. Pandey, A. Bansal, V. K. Singh, B. Mukherjee, P. S. Saxena and A. Srivastava, *Biosensors and Bioelectronics*, 2015, **74**, 207-213.
- 2. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang and S. Perrett, *Nature nanotechnology*, 2007, **2**, 577-583.
- 3. W. Dong, G. Chen, X. Hu, X. Zhang, W. Shi and Z. Fu, Sensors and Actuators B: Chemical, 2020, 305, 127530.
- 4. V. Nandwana, W. Huang, Y. Li and V. P. Dravid, ACS Applied Nano Materials, 2018, 1, 1949-1958.
- 5. S. Cai, Q. Han, C. Qi, Z. Lian, X. Jia, R. Yang and C. Wang, *Nanoscale*, 2016, **8**, 3685-3693.
- 6. M. Chi, Y. Zhu, L. Jing, C. Wang and X. Lu, *Analytica Chimica Acta*, 2018, **1035**, 146-153.
- 7. P. Singh, R. P. Ojha, S. Kumar, A. K. Singh and R. Prakash, *Materials Chemistry and Physics*, 2021, 267, 124684.
- 8. W. Zeng, L. Liu, Y. Yi, Y. Wu, N. Sun, B. Lv and G. Zhu, *Microchemical Journal*, 2019, **150**, 104149.
- 9. J. Pan, Z. Zheng, J. Yang, Y. Wu, F. Lu, Y. Chen and W. Gao, *Talanta*, 2017, **166**, 1-7.
- 10. L. Zhao, L. Zhao, Y. Miao and C. Zhang, *Electrochimica Acta*, 2016, **206**, 86-98.
- 11. V. Vinoth, J. J. Wu, A. M. Asiri and S. Anandan, *Ultrasonics sonochemistry*, 2017, **39**, 363-373.
- 12. J. Ru, J. Du, D.-D. Qin, B.-M. Huang, Z.-H. Xue, X.-B. Zhou and X.-Q. Lu, *Talanta*, 2013, **110**, 15-20.