Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Wide band gap thiophosphates ASrPS₄ (A=Li, Na, K, Rb, Cs): cation size effect induced successive structure transformation

Yi Huang^a, Junben Huang^b, Yong Zhang^{a,c*}

^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

^b School of Materials Science and Engineering, Education Ministry Key Laboratory of Nonferrous Materials Science and Engineering, Central South University, Changsha 410083 Hunan, China.

^c School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.

To whom correspondence should be addressed: *E-mail: yongzhang@hit.edu.cn (Yong Zhang)

Atom	x	у	Z	Ueq	Occupancy
LiSrPS ₄					
Li(1)	0.250000	0.9668(9)	0.500000	0.040(2)	1
Sr(1)	0.000000	0.750000	0.625000	0.0196(2)	1
Sr(2)	0.500000	0.750000	0.625000	0.0183(2)	1
P(1)	0.250000	0.71546(9)	0.500000	0.0143(2)	1
S(1)	0.10315(6)	0.61568(7)	0.49747(4)	0.0191(2)	1
S(2)	0.24719(7)	0.81655(6)	0.58371(4)	0.0211(2)	1
NaSrPS ₄					
Na(1)	0.5934(3)	0.7825(3)	0.7429(4)	0.0447(7)	1
Sr(1)	0.14540(6)	0.89567(4)	0.26861(7)	0.02039(18)	1
P(1)	0.23952(15)	0.54354(12)	0.2954(2)	0.0178(3)	1
S(1)	0.34959(15)	0.68125(13)	0.4712(2)	0.0229(3)	1
S(2)	0.04491(15)	0.62849(12)	0.16092(19)	0.0195(3)	1
S(3)	0.18406(16)	0.39595(12)	0.4582(2)	0.0229(3)	1
S(4)	0.36384(16)	0.48212(13)	0.1039(2)	0.0242(3)	1
KSrPS ₄					
K(1)	0.7877(2)	0.250000	1.0225(8)	0.0414(11)	1
Sr(1)	0.52226(8)	0.250000	0.2100(2)	0.0211(4)	1
P(1)	0.5983(2)	0.250000	0.7222(6)	0.0159(7)	1
S(1)	0.6670(2)	0.250000	0.4689(6)	0.0240(8)	1
S(2)	0.4793(2)	0.250000	0.6577(6)	0.0230(8)	1
S(3)	0.62181(14)	0.4957(4)	0.8977(4)	0.0222(6)	1
RbSrPS ₄					
Rb(1)	0.70958(3)	1.250000	0.49457(9)	0.04372(15)	1
Sr(1)	0.52061(2)	0.750000	0.20859(6)	0.02230(11)	1
P(1)	0.59667(6)	0.750000	0.72308(15)	0.01719(19)	1
S(1)	0.66281(6)	0.750000	0.46728(16)	0.0242(2)	1
S(2)	0.61909(4)	0.50528(9)	0.89890(11)	0.02319(15)	1
S(3)	0.48101(6)	0.750000	0.65956(16)	0.0260(2)	1
CsSrPS ₄					
Cs(1)	0.70669(3)	0.750000	0.45337(13)	0.0470(2)	1
Sr(1)	0.51730(4)	0.250000	0.20509(11)	0.02371(19)	1
P(1)	0.59489(10)	0.250000	0.7239(3)	0.0183(4)	1
S(1)	0.65593(11)	0.250000	0.4603(3)	0.0242(4)	1
S(2)	0.48352(11)	0.250000	0.6650(3)	0.0290(4)	1
S(3)	0.61640(8)	0.49263(19)	0.9007(2)	0.0252(3)	1

Table S1. Atomic coordinates and equivalent isotropic displacement parameters for $ASrPS_4$ (A=Li, Na, K, Rb, Cs).

Figure S1. Differential scanning calorimetry (DSC) curves of LiSrPS₄ (a) and NaSrPS₄ (b).

Figure S2. (a) The connection of [PS₄] tetrahedra with [SrS₈] and [NaS₇] by sharing S atoms to form the 3D structure. (b) The connection of [KS₈] and [SrS₈] in KSrPS₄. (c) The connection of [RbS₈] and [SrS₉] in RbSrPS₄. (d) The connection of [CsS₉] and [SrS₉] in CsSrPS₄.

Figure S3. The theoretical band gap and the partial density of states (PDOS) of ASrPS₄ (A=Li, Na, K, Rb, Cs), (e) and (f) are isolated [PS₄] units with bond distance of P-S.