Electronic Supporting Information

A greener approach towards the synthesis of *N*-heterocyclic thiones and selones using mechanochemical technique

Siddhartha,[‡] Shalini Rangarajan,[‡] Harish S. Kunchur and Maravanji. S. Balakrishna*

Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

*Author to whom correspondence should be addressed. E-mail: krishna@chem.iitb.ac.in, msb_krishna@iitb.ac.in (M. S. Balakrishna); Fax: +91-22-5172-3480/2576-7152.

[†] Electronic supplementary information (ESI): Tables of structural data and spectroscopic data. CCDC 2189643-2189645. For ESI and crystallographic data in CIF or other electronic format see DOI:

[‡]These authors contributed equally to this work.

Table of content

Crystal structure determination of compounds 4-6	S2
Crystallographic information for compounds 4-6	S 3
Spectral data for isolated compounds	S4-S63
Images of balling machine used in the current work	
References	S63

Crystal Structure Determination of Compounds 4-6.

Single crystals of all compounds were mounted on a Cryoloop with a drop of Paratone oil and positioned in the cold nitrogen stream on a Rigaku Saturn724+ (2x2 bin mode) diffractometer (for 5 and 6) and Bruker D8 Venture (for 4). The data were reduced using CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) software. The structures were solved using Olex2¹ with the ShelXT² structure solution program using intrinsic phasing and refined with the SHELXL³ refinement package using least-squares minimization. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and included as riding contributions with isotropic displacement parameters tied to those of the attached nonhydrogen atoms. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s). The reflections with error/esd more than 10 were excluded in order to avoid problems related to better refinement of the data. The data completeness is more than 99.8% in most of the cases, which is enough to guarantee a very good refinement of data. The details of X-ray structural determinations are given in Tables S1. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2189643 (compound 4), 2189644 (compound **5**) and 2189645 (compound **6**).

	Comp_4	Comp_5	Comp_6
Empirical formula	C ₁₇ H ₁₇ N ₂ OPSe	C ₂₀ H ₂₃ N ₂ OPS	C ₂₀ H ₂₃ N ₂ OPSe
Formula weight	375.25	370.43	417.33
Temperature/K	150.15	150	150.00
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	Pbca	$P2_1/c$	$P2_1/c$
a/Å	10.9392(3)	10.6482(15)	10.6448(7)
b/Å	8.0482(3)	21.1068(17)	21.0365(8)
c/Å	37.8833(12)	9.3551(10)	9.5229(5)
α/°	90	90	90
β/°	90	112.860(14)	113.495(7)
$\gamma/^{\circ}$	90	90	90
Volume/Å ³	3335.28(19)	1937.4(4)	1955.7(2)
Z	8	4	4
$\rho_{calc}g/cm^3$	1.495	1.270	1.417
μ/mm^{-1}	2.350	0.260	2.012
F(000)	1520.0	784.0	856.0
Crystal size/mm ³	0.102 imes 0.068 imes	0.089 imes 0.067 imes	0.098 imes 0.068 imes
	0.056	0.058	0.056
2Θ range for data	4.3 to 65.32	4.152 to 49.994	3.872 to 62.346
collection/°			
Reflections collected	55566	12285	16625
Independent reflections	5557 [$R_{int} = 0.0984$]	$3409 [R_{int} =$	5747 [R _{int} =
		0.1067]	0.0409]
Data/restraints/parameters	5557/0/200	3409/55/264	5747/85/265
Goodness-of-fit on F ²	1.025	1.059	1.046
R_1	0.0528	0.0752	0.0476
wR_2	0.1419	0.1860	0.1314
Largest diff. peak/hole /e Å ⁻³	0.30/-0.83	0.59/-0.40	1.57/-0.50

 Table S1 Crystallography details.

Fig. S1 ¹H NMR spectrum of **3**.

Fig. S2 ${}^{31}P{}^{1}H$ NMR spectrum of 3.

Fig. S4 HRMS spectrum of 3.

$\begin{array}{c} 7.7\\ 1.7.91\\ 1.7.91\\ 1.7.92\\ 1.$

Fig. S5 ¹H NMR spectrum of 4.

Fig. S6 ${}^{31}P{}^{1}H$ NMR spectrum of **4**.

Fig. S7 13 C NMR spectrum of **4**.

Analysis Info

 Analysis Name
 D:\Data\MAR-2020\MSB-SD-HK-80.d

 Method
 Tune_pos_NAICSI-1000_Low.m

 Sample Name
 MSB-SD-HK-80

 Comment
 C17H17N2O1P1Se1

Acquisition Date 3/12/2020 11:32:08 AM

Operator SJG

Instrument

SJG-out maXis impact 282001.00081

Fig. S8 HRMS spectrum of 4.

Fig. S9 1 H NMR spectrum of **5**.

-30.26

Fig. S10 ${}^{31}P{}^{1}H$ NMR spectrum of **5**.

Fig. S11 ¹³C NMR spectrum of 5.

Analysis Info

Analysis Name D:\Data\NOV-2019\MSB-SD-9-3-1.d Method Tune_pos_NAICSI-1000.m Sample Name MSB-SD-9-3-1 C20H23N2O1P1S1 Comment

Acquisition Date 11/26/2019 11:41:22 PM

maXis impact 282001.00081

Fig. S12 HRMS spectrum of 5.

Fig. S13 ¹H NMR spectrum of **6**.

-30.29

Fig. S14 ${}^{31}P{}^{1}H$ NMR spectrum of **6**.

Fig. S15 13 C NMR spectrum of **6**.

11/26/2019 11:48:04 PM

maXis impact 282001.00081

Acquisition Date

INN-IN

Operator

Instrument

Analysis Info

Analysis Name D:\Data\NOV-2019\MSB-SD-9-8.d Method Tune_pos_NAICSI-1000.m MSB-SD-9-8 Sample Name C20H23N2O1P1Se Comment

425.0869 425.0881 1 C20H23LiN2OPSe -2.8 11.6 1 100.00 10.5 even ok

Fig. S16 HRMS spectrum of 6.

Fig. S17 1 H NMR spectrum of **7**.

Fig. S18 ${}^{31}P{}^{1}H$ NMR spectrum of 7.

Fig. S19¹³C NMR spectrum of 7.

Fig. S20 HRMS spectrum of 7.

Fig. S21 ¹H NMR spectrum of 8.

Fig. S22 ${}^{31}P{}^{1}H$ NMR spectrum of **8**.

Fig. S23 13 C NMR spectrum of 8.

Fig. S24 HRMS spectrum of 8.

Fig. S25 ¹H NMR spectrum of 9.

Fig. S26 13 C NMR spectrum of **9**.

Fig. S27 HRMS spectrum of 9.

4.45 4.45 4.44 4.43 4.43

Fig. S28 ¹H NMR spectrum of 10.

Fig. S29 13 C NMR spectrum of **11**.

Fig. S30 HRMS spectrum of 10.

Fig. S31 ¹H NMR spectrum of 11.

Fig. S32 13 C NMR spectrum of **11**.

Fig. S33 HRMS spectrum of 11.

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Fig. S34 ¹H NMR spectrum of 12.

Fig. S35 ¹³C NMR spectrum of **12**.

Fig. S36 HRMS spectrum of 12.

4.35 4.34 4.34 4.34 1.83 1.83 1.83 1.83 1.84 1.83 1.84 1.83 1.84 1.83 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.46 1.47 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.49 1.49 1.49 <t

Fig. S37 ¹H NMR spectrum of 13.

Fig. S39 HRMS spectrum of 13.

7.29 7.28 7.28

Fig. S40 ¹H NMR spectrum of 14.

Fig. S42 HRMS spectrum of 14.

Fig. S43 ¹H NMR spectrum of 15.

Fig. S44 ¹³C NMR spectrum of 15.

Fig. S46 ¹H NMR spectrum of **16**.

Fig. S48 HRMS spectrum of 16.

Fig. S50 13 C NMR spectrum of **17**.

Fig. S51 HRMS spectrum of 17.

 $\begin{array}{c} 4.10\\ 4.06\\ -3.66\\ 1.76\\ 1.76\\ 1.76\\ 1.76\\ 1.76\\ 1.76\\ 1.76\\ 1.76\\ 1.72$

Fig. S52 ¹H NMR spectrum of 18.

6.83 6.83 6.82 6.81

Fig. S53 13 C NMR spectrum of **18**.

Fig. S54 HRMS spectrum of 18.

Fig. S55 ¹H NMR spectrum of 19.

Fig. S57 ¹H NMR spectrum of 20.

Fig. S59 ¹H NMR spectrum of 21.

Fig. S61 HRMS Spectrum of 21.

Fig. S62 ¹H NMR spectrum of 22.

Fig. S64 HRMS spectrum of 22.

Fig. S65 ¹H NMR spectrum of 23.

Fig. S67 HRMS spectrum of 23.

Fig. S68 ¹H NMR spectrum of 24.

Fig. S70 HRMS spectrum of 24.

Fig. S71 ¹H NMR spectrum of 25.

Fig. S72 ¹³C NMR spectrum of **25**.

Fig. S73 HRMS spectrum of 25.

Fig. S74 ¹H NMR spectrum of 26.

Fig. S75 ¹³C NMR spectrum of 26.

Fig. S76 HRMS spectrum of 26.

Fig. S78 13 C NMR spectrum of **27**.

Fig. S79 HRMS spectrum of 27.

Fig. S80 ¹H NMR spectrum of 28.

Fig. S81 ¹³C NMR spectrum of **28**.

Fig. S82 HRMS spectrum of 28.

$\begin{array}{c} 7.99\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.76\\ 7.74\\ 7.41\\ 7.29\\ 7.29\\ 7.24\\ 7.24\\ 7.24\\ 7.24\\ 7.24\\ 7.24\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.55\\$

Fig. S83 ¹H NMR spectrum of 29.

Fig. S84 ${}^{31}P{}^{1}H$ NMR Spectrum of 29.

Fig. S85 HRMS spectrum of 29.

Fig. S87 ${}^{31}P{}^{1}H$ NMR spectrum of 30.

Acquisition Date 3/12/2020 10:41:16 AM

SJG-out

maXis impact 282001.00081

Operator

Instrument

Analysis Info

Analysis Name D:\Data\MAR-2020\MSB-SD-HK-96.d Method Tune_pos_NAICSI-1500.m MSB-SD-HK-96 Sample Name Comment C42H36N4O2P2Se2

Acquisition Parameter

Fig. S88 HRMS spectrum of 30.

Fig. S89 ¹H NMR spectrum of 31.

Fig. S90 ${}^{31}P{}^{1}H$ NMR spectrum of 31.

Fig. S91 ¹³C NMR spectrum of **31**.

Fig. S92 HRMS spectrum of 31.

Fig. S93 ¹H NMR spectrum of **32**.

Fig. S94 ${}^{31}P{}^{1}H$ NMR spectrum of 32.

Fig. S95 ¹³C NMR spectrum of 32.

Fig. S96 HRMS spectrum of 32.

Fig. S97 HRMS spectrum of 33.

Fig. S98 HRMS spectrum of 34.

Fig. S99 HRMS spectrum of 35.

Fig. S100 Synthesis of thiones a) before the synthesis b) after the synthesis

a)

b)

Fig. S101 Synthesis of selones a) before the synthesis b) after the synthesis

Fig. S102 Different sized balls used in the current work for efficient grinding.

Fig. S103 Ball-milling machine used in the current study.

References:

- 1 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Cryst.*, 2009, **42**, 339-341.
- 2 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2015, 71, 3-8.
- 3 G. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.