Ultrasensitive detection of mercury (II) in aqueous solution via

spontaneous precipitation of CsPbBr₃ crystallites

Wenjing Jiang,^{a,b} Yi Xu,^{a,b} Li Wang, ^{*a,b} Li Chen,^{a,b} and Shunbo Li, ^{*a,b}

a. Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China. Email: shunbo.li@cqu.edu.cn (S. Li) and wangliyu@cqu.edu.cn (L. Wang)

b. International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.

Fig. S1 The UV-vis spectra of the prepared CsPbBr₃ crystals with and without presence of mercury ion on the left, and the photoluminescence of CsPbBr₃ crystals with and without presence of mercury ion on the right.

Fig. S2 (A) The photoluminescent spectra of CsPbBr₃ precipitated from DI water (black curve), solution with interfering ions (red curve) and mixed solution with interfering ions and 0.1 μ M Hg²⁺ (blue curve); (B) The fluorescent intensity changes (I/I₀) of CsPbBr₃ precipitated from DI water (blank), solution with interfering ions and mixed solution with interfering ions and 0.1 μ M Hg²⁺. The interfering ions include Ni²⁺, Mg²⁺, Ca²⁺, Co²⁺, Cu²⁺, Pb²⁺, Cd²⁺, Mn²⁺, Fe²⁺, Al³⁺ and K⁺ with concentration of 1 μ M for each. I₀ is the peak intensity for blank sample. The emission spectra were measured four times for each condition.