Supporting Information

Cationic ligands between σ -donation and hydrogen-bridge-bondstabilisation of ancillary ligands in coinage metal complexes with protonated carbodiphosphoranes

Leon Maser,^{a,b} Matthias Vogt and Robert Langer^{a,b,*}

^a Institute of Chemistry, Faculty of Natural Sciences II, Martin-Luther-Universität Halle- Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany. Fax: +49 (0)345 5527028; Tel: +49 (0)345 5525620; E-mail: <u>robert.langer@chemie.uni-halle.de</u>

^b Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany.

Contents

1	Exp	perimental Procedures	3 -
	1.1	Materials and Methods	3 -
	1.1	Synthesis of [({dppm}2CH)CuCl](PF6) (2-Cl)	3 -
	1.2	Synthesis of [({dppm}2CH)CuBr](PF6) (2-Br)	4 -
	1.3	Synthesis of [({dppm}2CH)Cul](PF6) (2-I)	4 -
	1.4	Synthesis of [({dppm}2CH)Cu(NCMe)](PF6)(BF4) (2-NCMe)	5 -
	1.5	Synthesis of [({ $dppm$ } ₂ CH)Ag](PF ₆) ₂ (3)	5 -
	1.6	Synthesis of [({dppm}2CH)AgCl](NO3) (3-Cl)	5 -
	1.7	Synthesis of [({dppm}2CH)AgBr](PF6) (3-Br)	6 -
	1.8	Synthesis of [({dppm}2CH)Agl](PF6) (3-I)	6 -
	1.9	Synthesis of [({dppm}2CH)Ag(NCMe)](PF6)2 (3-NCMe)	7 -
	1.10	Synthesis of [({dppm} ₂ CH)Ag(H ₂ O)](PF ₆) ₂ (3-H ₂ O)	7 -
	1.11	Synthesis of [({ $dppm$ } ₂ CH)Ag(NO ₃)](PF ₆) (3-NO ₃)	8 -
2	Spe	ectra	9 -
3	X-R	ay Crystallography	28 -
4	Con	nputational Details	34 -
5	Refe	erences	43 -

1 Experimental Procedures

1.1 Materials and Methods

All experiments were carried out under an atmosphere of purified argon or nitrogen in the MBraun glove boxes LABmaster 130 and UNIIab or using standard Schlenk techniques.

Diethylether was dried over Na/K alloy. *n*-Hexane was dried over LiAlH₄. Dichloromethane and MeCN were dried over CaH₂. After drying, solvents were stored over appropriate molecular sieves. Deuterated solvents were degassed with freeze-pump-thaw cycles and stored over appropriate molecular sieves under argon atmosphere.

¹H, ¹³C, ¹¹B and ³¹P NMR spectra were recorded using Bruker Avance HD 250, 300 A, DRX 400, DRX 500 and Avance 500 NMR spectrometers as well as Agilent Technologies 400 MHz VNMRS and 500 MHz DD2 NMR spectrometers at 300 K. ¹H and ¹³C {¹H}, ¹³C-APT (attached proton test) NMR chemical shifts are reported in ppm downfield from tetramethylsilane. The resonance of the residual protons in the deuterated solvent was used as internal standard for ¹H NMR spectra. The solvent peak of the deuterated solvent was used as internal standard for ¹³C NMR spectra. The assignment of resonances in ¹H and ¹³C NMR spectra was further supported by ¹H COSY and ¹H, ¹³C HMQC NMR spectra. ³¹P NMR chemical shifts are reported in ppm downfield from H₃PO₄ and referenced to an external 85 % solution of phosphoric acid in D₂O. The following abbreviations are used for the description of NMR data: br (broad), s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet).

FT-IR spectra were recorded by attenuated total reflection of the solid samples on a Bruker Tensor IF37 spectrometer. The intensity of the absorption band is indicated as w (weak), m (medium), s (strong), vs (very strong) and br (broad).

HR-ESI mass spectra were acquired with a LTQ-FT mass spectrometer (Thermo Fisher Scientific) or with Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific). The resolution was set to 100.000. Elemental analyses were done by combustion analysis in a vario Micro cube (Elementar). In a glovebox, samples were weighed in Sn-crucibles of known mass and kept under exclusion of ambient air by cold pressure welding. Measurements were performed as double determinations, the values presented herein are the arithmetic mean.

Bis(diphenylphosphino)methane (dppm) was synthesized following the procedure published by K. Sommer.^[1] [HC(dppm)₂]Cl (**1a**) was synthesized according to the literature by Peringer and coworkers.^[2]

1.1 Synthesis of [({dppm}₂CH)CuCl](PF₆) (2-Cl)

121 mg [{dppm}₂CH](PF₆) (**1b**, 131 µmol, 1.0 eq.) and 13 mg CuCl (131 µmol, 1.0 eq.) were dissolved in 10 ml MeCN. *In vacuo* removal of all volatiles and recrystallization of the residue from CH₂Cl₂/*n*-hexane leads to the formation of single crystals of **2-Cl** (101 mg, 98.5 µmol, 75.4% yield). ³¹P{¹H} NMR (202 MHz, CD₃CN) δ : -144.6 (sept, ¹*J*_{PF} = 706.2 Hz, *P*F₆), -27.2 (br, W_{1/2} = 125.0 Hz, *P*-Cu-*P*), 22.1 (dd, *J*_{PP} = 39.1 Hz, *J*_{PP} = 27.3 Hz, *P*-CH-*P*) ppm. ¹⁹F NMR (470 MHz, CD₃CN) δ : -72.9 (d, ¹*J*_{FP} = 706.4 Hz, PF₆) ppm. ¹H NMR (500 MHz, CD₃CN) δ : 2.93 (t, 1H, ²*J*_{PH} = 10.6 Hz, P-C*H*-P), 3.87 (br d, 4H, *J* = 9.5 Hz, P-C*H*₂-P), 7.05 (t, 8H, *J* = 7.5 Hz, phenyl-*H*), 7.09-7.21 (m, 12H, phenyl-*H*), 7.33 (t, 4H, *J* = 7.4 Hz, phenyl-*H*), 7.44-7.55 (m, 16H, phenyl-*H*) ppm. ¹³C APT NMR (126 MHz, CD₃CN) δ : -2.1 (m, P-<u>C</u>H-P), 29.8 (br, P-<u>C</u>H₂-P), 129.5 (t, *J*_{PC} = 5.2 Hz, phenyl-*C*), 133.5 (t, *J*_{PC} = 6.4 Hz, phenyl-*C*), 133.6 (s, phenyl-*C*), 134.3 (br, phenyl-*C*), ppm. IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3041 (w), 2972 (w), 2919 (w), 1587 (w), 1574 (w), 1486

(w), 1435 (m), 1375 (w), 1312 (w), 1262 (w), 1212 (w), 1178 (w), 1161 (w), 1145 (w), 1130 (w), 1108 (m), 1099 (m), 1026 (w), 999 (w), 962 (m), 840 (s), 825 (s), 788 (m), 774 (m), 755 (m), 732 (s), 686 (s), 616 (w), 555 (s), 522 (m), 499 (s), 481 (s), 467 (m), 451 (m), 423 (m), 414 (m), 403 (m). HR-ESI-MS (pos. mode, MeOH/HCOOH) m/z: 879.1451 (calculated for [({dppm}_2CH}CuCl]+), 879.1487 (found, Δ = 4.1 ppm). Anal. Calcd for C₅₁H₄₅Cl₁Cu₁P₅F₆·1.5CH₂Cl₂: C 54.68%, H 4.20%; Found: C 54.64%; H 4.10%.

1.2 Synthesis of [({dppm}₂CH)CuBr](PF₆) (**2-Br**)

115 mg [{dppm}₂CH](PF₆) (1b, 124 µmol, 1.0 eq.) and 17 mg CuBr (119 µmol, 1.0 eq.) were dissolved in 10 ml MeCN. In vacuo removal of all volatiles and recrystallization of the residue from CH₂Cl₂/n-hexane leads to the formation of single crystals of 2-Br (93 mg, 86.9 µmol, 70.0 % yield). ³¹P{¹H} NMR (202 MHz, CD₃CN) δ: -144.6 (sept, ¹J_{PF} = 706.4 Hz, PF₆), -28.5 (br, W_{1/2} = 151.8 Hz, P-Cu-P), 23.1 (dd, J_{PP} = 40.6 Hz, J_{PP} = 27.7 Hz, P-CH-P) ppm. ¹H NMR (500 MHz, CD₃CN) δ: 2.90 (t, 1H, ²J_{PH} = 11.6 Hz, P–CH–P), 3.91 (br m, 4H, P–CH₂–P), 7.03 (t, 8H, J = 7.5 Hz, phenyl-H), 7.09-7.20 (m, 12H, phenyl-H), 7.33 (t, 4H, J = 7.4 Hz, phenyl-H), 7.44-7.58 (m, 16H, phenyl-*H*) ppm. ¹³C APT NMR (126 MHz, CD₃CN) δ: 29.1 (br, P–<u>C</u>H₂–P), 29.6 (br, P-<u>C</u>H₂-P),129.5 (t, J_{PC} = 4.9 Hz, phenyl-C), 129.9 (t, J_{PC} = 6.4 Hz, phenyl-C), 130.9 (s, phenyl-C), 131.9 (t, $J_{PC} = 8.2 \text{ Hz}$, phenyl-C), 133.6 (t, $J_{PC} = 5.4 \text{ Hz}$, phenyl-C), 134.3 (br, phenyl-C), ppm. IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3056 (w), 3043 (w), 2972 (w), 2954 (w), 2918 (w), 1800 (w), 1588 (w), 1576 (w), 1559 (w), 1486 (w), 1435 (m), 1375 (w), 1313 (w),1270 (w), 1262 (w), 1211 (w), 1187 (w), 1177 (w), 1160 (w), 1145 (w), 1129 (w), 1107 (m), 1099 (m), 1073 (w), 1048 (w), 1026 (w), 999 (w), 959 (m), 868 (w), 840 (s), 826 (s), 809 (m), 788 (m), 773 (m), 755 (m), 731 (s), 696 (m), 686 (s), 616 (w), 569 (s), 527 (m), 521 (m), 499 (m), 481 (m), 467 (m), 452 (m), 429 (m), 429 (m), 424 (m), 414 (m), 402 (m). HR-ESI-MS (pos. mode, MeOH/HCOOH) m/z: 925.0957 (calculated for [({dppm}₂CH}CuBr]⁺), 925.0925 (found, Δ = 3.5 ppm). Anal. Calcd for C₅₁H₄₅Br₁Cu₁P₅F₆·1.4CH₂Cl₂: C 52.93%, H 4.05%; Found: C 52.77%; H 3.66%.

1.3 Synthesis of [({dppm}₂CH)Cul](PF₆) (**2-I**)

111 mg [{dppm}₂CH](PF₆) (**1b**, 120 μmol, 1.0 eq.) and 17 mg Cul (121 μmol, 1.0 eq.) were dissolved in 10 ml MeCN. In vacuo removal of all volatiles and recrystallization of the residue from CH_2Cl_2/n -hexane leads to the formation of single crystals of **2-Cl** (91 mg, 81.5 μ mol, 68.0 % yield). ³¹P{¹H} NMR (202 MHz, CD₃CN) δ: -144.6 (sept, ¹J_{PF} = 706.4 Hz, PF₆), -30.6 (br, W_{1/2} = 201.4 Hz, P-Cu-P), 24.4 (dd, J_{PP} = 42.3 Hz, J_{PP} = 27.5 Hz, P-CH-P) ppm. ¹⁹F NMR (470 MHz, CD₃CN) δ: -72.9 (d, ¹*J*_{FP} = 706.4 Hz, P*F*₆) ppm. ¹H NMR (500 MHz, CD₃CN) δ: 2.87 (t, 1H, ${}^{2}J_{PH}$ = 12.2 Hz, P–CH–P), 3.93 (br m, 4H, P–CH₂–P), 7.02 (t, 8H, J = 7.5 Hz, phenyl-H), 7.10-7.18 (m, 12H, phenyl-H), 7.34 (t, 4H, J = 7.4 Hz, phenyl-H), 7.44-7.57 (m, 16H, phenyl-H) ppm. ¹³C APT NMR (126 MHz, CD₃CN) δ: -0.8 (m, P–<u>C</u>H–P), 29.0 (br, P–<u>C</u>H₂–P), 129.5 (t, $J_{PC} = 4.9$ Hz, phenyl-C), 129.9 (t, $J_{PC} = 6.4$ Hz, phenyl-C), 130.9 (s, phenyl-C), 133.3 (t, J_{PC} = 8.0 Hz, phenyl-C), 133.7 (t, J_{PC} = 5.4 Hz, phenyl-C), 134.4 (t, J_{PC} = 1.3 Hz, phenyl-C), ppm. IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3055 (w), 2968 (w), 2918 (w), 1588 (w), 1573 (w), 1485 (w), 1435 (m), 1375 (w), 1336 (w), 1312 (w), 1268 (w), 1212 (w), 1176 (w), 1159 (w), 1144 (w), 1129 (w), 1107 (m), 1026 (w), 999 (w), 957 (m), 839 (s), 826 (s), 787 (m), 773 (m), 753 (m), 732 (s), 696 (m), 686 (s), 616 (w), 556 (s), 521 (m), 499 (s), 480 (s), 467 (m), 423 (m), 400 (m). Anal. Calcd for C₅₁H₄₅I₁Cu₁P₅F₆·1.43CH₂Cl₂: C 51.30%, H 3.91%; Found: C 51.32%, H 3.75%.

1.4 Synthesis of [({dppm}₂CH)Cu(NCMe)](PF₆)(BF₄) (**2-NCMe**)

103 mg [{dppm}₂CH](PF₆) (**1b**, 111 μmol, 1.0 eq.) and 35.5 mg [Cu(NCMe)₄](BF₄) (113 μmol, 1.0 eq.) were dissolved in 4ml MeCN. After stirring for 16 h at ambient temperature the mixture is filtered and layered with 10 mL of diethylether and 2 mL of *n*-hexane. 59 mg of single crystals suitable for single crystal X-Ray diffraction of 2-NCMe (50.2 µmol, 45.1 % yield) were isolated after 10 days. ³¹P{¹H} NMR (202 MHz, CD₃CN) δ : -144.6 (sept, ¹J_{PF} = 706.6 Hz, *P*F₆), -20.1 (br, W_{1/2} = 458.3 Hz, P-Cu-P), 26.5 (dd, J_{PP} = 43.1 Hz, J_{PP} = 26.7 Hz, P-CH-P) ppm. ¹⁹F NMR (470 MHz, CD₃CN) δ: -151.6 (s, BF₄), -72.9 (d, ${}^{1}J_{FP}$ = 706.7 Hz, PF₆) ppm. ${}^{1}H$ NMR (500 MHz, CD_3CN) δ : 3.03 (t, 1H, ² J_{PH} = 12.8 Hz, P–CH–P), 3.84 (m, 4H, P–CH₂–P), 7.14-7.23 (m, 16H, phenyl-H), 7.29 (br t, 4H, J = 7.4 Hz, phenyl-H), 7.33-7.47 (m, 20H, phenyl-H) ppm. ¹³C APT NMR (126 MHz, CD₃CN) δ : -1.8 (m, P–CH–P), 28.8 (br d, J_{PC} = 65.4 Hz, P–CH₂–P), 130.0 (t, $J_{PC} = 5.4 \text{ Hz}$, phenyl-*C*), 130.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 133.2 (t, $J_{PC} = 6.2 \text{ Hz}$, phenyl-*C*), 131.6 (s, phenyl-*C*), 131.6 (s 8.5 Hz, phenyl-*C*), 133.3 (t, J_{PC} = 5.4 Hz, phenyl-*C*), 134.9 (t, J_{PC} = 1.5 Hz, phenyl-*C*), ppm. IR (ATR): $\tilde{\nu} / cm^{-1} = 3054$ (w), 2962 (w), 2950 (w), 2910 (w), 2312 (w), 2272 (w), 2115 (w), 1810 (w), 1589 (w), 1574 (w), 1486 (w), 1437 (m), 1377 (w), 1337 (w), 1314 (w), 1283 (w), 1223 (w), 1181 (w), 1156 (w), 1106 (m), 1091 (m), 1047 (m), 1034 (m), 1025 (m), 996 (m), 961 (m), 835 (s), 812 (m), 791 (w), 777 (w), 767 (w), 749 (m), 735 (s), 687 (s), 615 (w), 556 (s), 522 (m), 500 (s), 484 (s), 472 (s), 447 (m), 429 (m), 415 (m). HR-ESI-MS (pos. mode, MeCN) m/z: 422.0878 (calculated for [({dppm}₂CH}Cu]²⁺), 422.0889 (found, Δ = 2.6 ppm). Anal. Calcd for C₅₃H₄₈B₁Cu₁F₁₀NP₅: C 56.93%, H 4.33%, N 1.25; Found: C 57.27%, H 3.99%, N 1.52%.

1.5 Synthesis of $[({dppm}_2CH)Ag](PF_6)_2$ (3)

102 mg [{dppm}₂CH](PF₆) (**1b**, 110 µmol, 1.0 eq.) and 27 mg AgPF₆ (107 µmol, 1.0 eq.) were dissolved in 10 ml MeCN and stirred at ambient temperature for 16 hours. All volatiles of the mixture were removed in vacuo and 10 ml of dichloromethane were added to residue. After filtration of the resulting mixture the filtrate was layered with 20 ml of n-hexane. After the completed diffusion, isolation and subsequent drying of the formed crystalline solid under high vacuum 92 mg (75.4 μmol, 69 %) of 3 were isolated. 31P{1H} NMR (202 MHz, CD₂Cl₂) δ: -144.1 (sept, ¹J_{PF} = 713.7 Hz, *P*F₆), -8.9 (dm, ¹J_{PAg} = 519.9 Hz, *P*-Ag-*P*), 22.2 (t, J_{PP} = 14.5 Hz, *P*-CH-*P*) ppm. ¹⁹F NMR (470 MHz, CD₂Cl₂) δ : -71.5 (d, ¹J_{FP} = 713.6 Hz, PF₆) ppm. ¹H NMR (500 MHz, CD_2Cl_2) δ : 2.66 (t, 1H, ${}^2J_{PH}$ = 7.9 Hz, P–CH–P), 3.53 (m, 4H, P–CH₂–P), 7.18-7.24 (m, 8H, phenyl-H), 7.27-7.33 (m, 8H, phenyl-H), 7.39-7.53 (m, 16H, phenyl-H), 7.56-7.64 (m, 8H, phenyl-*H*) ppm. ¹³C-APT NMR (126 MHz, CD₂Cl₂) δ: 123.1 (s, phenyl-*C*), 123.8 (m, phenyl-*C*), 128.5 (m, phenyl-*C*), 130.1 (t, $J_{PC} = 6.4$ Hz, phenyl-*C*), 130.3 (t, $J_{PC} = 5.2$ Hz, phenyl-*C*), 132.5 (t, $J_{PC} = 5.2$ Hz, phenyl-C), 132.6 (s, phenyl-C), 133.6 (t, $J_{PC} = 5.2$ Hz, phenyl-C), 134.5 (s, phenyl-C) ppm. The CH₂- and (R_3P)CH-resonances of the PCP-ligand could not directly be detected by ¹³C-APT NMR spectroscopy, but were located in the ¹H,¹³C-HSQC NMR spectrum: $\delta = -2.7 (P-\underline{C}H-P)$, 30.7 (P- $\underline{C}H_2-P$) ppm. IR (ATR): $\tilde{\nu} / cm^{-1} = 3063$ (w), 2963 (w), 2915 (w), 2052 (w), 1587 (m), 1483 (m), 1436 (s), 1378 (m), 1334 (m), 1308 (m), 1218 (m), 1191 (m), 1165 (m), 1154 (m), 1106 (s), 1028 (m), 999 (m), 988 (s), 924 (m), 851 (s), 824 (vs), 782 (s), 766 (s), 746 (s), 731 (vs), 688 (vs), 617 (m), 555 (vs), 527 (s), 522 (s), 499 (s), 470 (s), 452 (s), 429 (s), 413 (s). Anal. Calcd for C₅₁H₄₅Ag₁F₁₂P₆: C 51.93%, H 3.85%; Found: C 51.88%, H 3.47%.

1.6 Synthesis of [({dppm}₂CH)AgCl](NO₃) (**3-Cl**)

303 mg [{dppm}₂CH]Cl (**1a**, 371 μ mol, 1.0 eq.) and 63 mg AgNO₃ (371 μ mol, 1.0 eq.) were dissolved in 10 ml MeCN. After stirring at ambient temperature for ten minutes a colorless

precipitate is formed. All volatiles of the mixture were removed in vacuo and 10 ml of dichloromethane were added to residue. After filtration of the resulting mixture into a light protected Schlenk tube, the filtrate is layered with 20 ml of *n*-hexane. After the completed diffusion, isolation and subsequent drying of the formed crystalline solid under high vacuum 333 mg (337 μmol, 91 %) of **3-CI** were isolated. ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) δ: 18.6 (m, P-CH-P), -16.2 (br, P-Ag-P) ppm. ¹H NMR (500 MHz, CD₂Cl₂) δ: 2.54 (t, 1H, ²J_{PH} = 8.1 Hz, P-CH-P), 4.73 (m, 4H, P-CH₂-P), 7.07 (m, 16H, phenyl-H), 7.17 (t, 4H, J_{HH} = 7.5 Hz, phenyl-H), 7.24 (t, 4H, J_{HH} = 7.3 Hz, phenyl-H), 7.54 (m, 8H, phenyl-H), 7.67 (dd, 8H, J = 8.1 Hz, J = 11.7 Hz, phenyl-H) ppm. ¹³C-APT NMR (126 MHz, CD₂Cl₂) δ: -3.8 (tt, ¹J_{PC} = 158.1 Hz, ³J_{PC} = 8.7 Hz, P-CH-P), 29.5 (br m, P-CH2-P), 124.6 (m, phenyl-C), 129.0 (t, JPC = 5.2 Hz, phenyl-C), 129.2 (t, $J_{PC} = 12.9$ Hz, phenyl-C), 130.2 (s, phenyl-C), 132.9 (m, phenyl-C), 133.1 (s, phenyl-*C*), 133.2 (t, J_{PC} = 5.2 Hz, phenyl-*C*), 133.6 (t, J_{PC} = 9.3 Hz, phenyl-*C*) ppm. IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3050 (w), 3962 (w), 2884 (w), 2786 (w), 2711 (w), 1762 (w), 1653 (w), 1588 (w), 1575 (w), 1485 (m), 1435 (s), 1379 (m), 1338 (w), 1260 (m), 1217 (m), 1182 (m), 1160 (m), 1105 (s), 1026 (m), 999 (m), 981 (s), 803 (m), 784 (m), 735 (s), 685 (s), 615 (w), 530 (m), 522 (m), 499 (s), 482 (s), 473 (s), 451 (m), 442 (m), 415 (m), 405 (m), 376 (m), 351 (m), 319 (w), 279 (w), 259 (w), 225 (m), 215 (w). HR-ESI-MS (pos. mode, MeCN) m/z: 887.1436 (calculated for [({dppm}₂C}Ag]⁺), 887.1447 (found, Δ = 1.2 ppm).

1.7 Synthesis of [({dppm}₂CH)AgBr](PF₆) (**3-Br**)

211 mg [{dpm}₂CH](PF₆) (**1b**, 228 μmol, 1.0 eq.) and 42.6 mg AgBr (227 μmol, 1.0 eq.) were suspended in a mixture of 5 ml CH₂Cl₂ and 2 ml MeCN. Stirring of the mixture at ambient temperature for 16 hours results in the formation of clear solution. Layering of the solution with diethylether yields 134 mg of a single crystalline solid of complex **3-Br** (120 μmol, 52.6 %). ³¹P{¹H} NMR (162 MHz, CD₃CN) δ: -144.6 (sept, ¹*J*_{PF} = 706.4 Hz, *P*F₆), -19.6 (br, *P*-Ag-*P*), 18.3 (m, *P*-CH-*P*) ppm. ¹H NMR (500 MHz, CD₃CN) δ: 2.58 (t, 1H, ²*J*_{PH} = 7.2 Hz, P–C*H*–P), 3.67 (m, 4H, P–C*H*₂–P), 7.08-7.21 (m, 16H, phenyl-*H*), 7.25-7.32 (m, 4H, phenyl-*H*), 7.32-7.44 (m, 12H, phenyl-*H*), 7.67 (m, 8H, phenyl-*H*) ppm. ¹³C{¹H} NMR (126 MHz, CD₃CN) δ: -3.9 (t, ²*J*_{PC} = 8.2 Hz, P–<u>C</u>H–P), 29.1 (m, P–<u>C</u>H₂–P), 124.8 (s, phenyl-*C*), 125.8 (s, phenyl-*C*), 129.8 (t, *J*_{PC} = 5.3 Hz, phenyl-*C*), 130.0 (t, *J*_{PC} = 6.5 Hz, phenyl-*C*), 131.7 (s, phenyl-*C*), 133.4 (t, *J*_{PC} = 5.3 Hz, phenyl-*C*), 134.2 (t, *J*_{PC} = 5.5 Hz, phenyl-*C*), 134.2 (s superimposed, phenyl-*C*) ppm. IR (ATR): $\tilde{\nu} / \text{cm}^{-1}$ = 3058 (w), 1588 (w), 1484 (w), 1435 (m), 1374 (w), 1313 (w), 1270 (w), 1216 (w), 1179 (w), 1149 (w), 1106 (m), 1026 (w), 982 (m), 838 (s), 824 (s), 788 (m), 731 (s), 687 (s), 529 (s), 498 (s), 481 (s), 444 (m), 416 (m), 376 (m), 351 (m), 279 (m), 251 (m), 225 (m), 212 (m) ppm.

1.8 Synthesis of [({dppm}₂CH)AgI](PF₆) (**3-I**)

106 mg [{dppm}₂CH](PF₆) (**1b**, 114 µmol, 1.0 eq.) and 27 mg AgI (115 µmol, 1.0 eq.) were suspended in 10 ml CH₂Cl₂. Stirring of the mixture at ambient temperature for 16 hours results in the formation of clear solution. Layering of the solution with *n*-hexane yields 118 mg of a single crystalline solid of complex **3-I** (102 µmol, 88.8 %). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂) δ : -144.1 (sept, ¹*J*_{PF} = 711.4 Hz, *P*F₆), -22.5 (br, *P*-Ag-*P*), 18.4 (m, *P*-CH-*P*) ppm. ¹H NMR (500 MHz, CD₂Cl₂) δ : 2.40 (br, 1H, P–C*H*–P), 3.58 (br, 4H, P–C*H*₂–P), 7.10-7.19 (br m, 16H, phenyl-*H*), 7.25 (br, 4H, phenyl-*H*), 7.35 (br t, 4H, *J*_{PH} = 7.5 Hz, phenyl-*H*), 7.67 (m superimposed, 16H, phenyl-*H*) ppm. ¹³C-APT NMR (126 MHz, CD₂Cl₂) δ : 30.0 (m, P–<u>C</u>H₂–P), 129.4 (t, *J*_{PC} = 5.0 Hz, phenyl-*C*), 129.7 (t, *J*_{PC} = 6.4 Hz, phenyl-*C*), 130.9 (s, phenyl-*C*), 132.7 (superimposed, phenyl-*C*), 133.2 (m, phenyl-*C*), 133.7 (s, phenyl-*C*) ppm. IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3055 (w), 2966 (w), 2911 (w), 2325 (w), 2114 (w), 1981 (w), 1802 (w), 1620 (w), 1588 (w), 1484 (m), 1435 (s), 1374 (w), 1336 (w), 1312 (w), 1267 (w), 1217 (w), 1178 (m), 1149 (m), 1136 (w), 1107 (s), 1069 (w), 1026 (m), 982 (s), 837 (w), 824 (vs), 789 (m), 776 (m), 729 (vs), 697 (s), 685 (vs), 615 (w), 555 (vs), 528 (s), 521 (s), 499 (s), 481 (s), 467 (s), 428 (m), 416 (m), 402 (m), 376 (m), 352 (m), 305 (w), 286 (w), 253 (w), 221 (w), 214 (w), 205 (w). HR-ESI-

MS (+) m/z: 1015.0562 (calculated for [({dppm}₂CH}AgI]⁺), 1015.0581 (found, Δ = 1.9 ppm). Anal. Calcd for C₅₃H₄₈Ag₁F₆I₁P₅: C 48.92%, H 3.75%; Found: C 48.31%, H 3.41%.

1.9 Synthesis of [({dppm}₂CH)Ag(NCMe)](PF₆)₂ (**3-NCMe**)

146 mg [{dppm}₂CH](PF₆) (**1b**, 158 μ mol, 1.0 eq.) and 40 mg AgPF₆ (158 μ mol, 1.0 eq.) were dissolved in 2 ml MeCN and stirred at ambient temperature for 16 hours. Layering of the reaction mixture with 8 ml of diethylether results in the formation of 139 mg **3-NCMe** (114 μ mol, 72.1 %) as a crystalline solid.

¹H NMR (500 MHz, CD₃CN) δ : 2.29 (t, 1H, ²J_{PH} = 7.2 Hz, P–CH–P), 3.53 (m, 4H, P–CH₂–P), 7.18 (m, 8H, phenyl-H), 7.31 (m, 8H, phenyl-H), 7.37 (m, 8H, phenyl-H), 7.46 (m, 8H, phenyl-H), 7.60 (m, 8H, phenyl-H) ppm. ¹³C-APT NMR (126 MHz, CD₃CN) δ: 124.8 (s, phenyl-C), 125.6 (s, phenyl-*C*), 130.2 (t, J_{PC} = 6.5 Hz, phenyl-*C*), 130.2 (t, J_{PC} = 6.5 Hz, phenyl-*C*), 130.4 (t, $J_{PC} = 5.5$ Hz, phenyl-C), 132.5 (s, phenyl-C), 133.2 (t, $J_{PC} = 5.5$ Hz, phenyl-C), 134.0 (t, J_{PC} = 9.5 Hz, phenyl-C), 134.7 (s, phenyl-C) ppm. The CH₂- and (R_3P)CH-resonances of the PCPligand could not directly be detected by ¹³C-APT NMR spectroscopy, but were located in the ¹H.¹³C-HSQC NMR spectrum: $\delta = -4.3$ (P–<u>C</u>H–P), The CH₂- and (R₃P)CH-resonances of the PCP-ligand could not directly be detected by ¹³C-APT NMR spectroscopy, but were located in the ¹H,¹³C-HSQC NMR spectrum: $\delta = -2.7 (P-\underline{C}H-P)$, 30.7 (P- $\underline{C}H_2-P$) ppm. 28.6 (P- $\underline{C}H_2-P$) ppm. ³¹P{¹H} NMR (122 MHz, CD₃CN) δ: -144.3 (sept, ¹J_{PF} = 708.8 Hz, *P*F₆), -13.7 (br d, ¹J_{PAg} = 439.2 Hz, *P*-Ag-*P*), 20.6 (dd, *J*_{PP} = 24.3 Hz, *J*_{PP} = 14.4 Hz, *P*-CH-*P*) ppm. IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3057 (w), 2960 (w), 2912 (w), 2312 (w), 2275 (w), 1588 (w), 1574 (w), 1485 (w), 1436 (m), 1376 (w), 1335 (w), 1314 (w), 1219 (w), 1180 (w), 1158 (w), 1144 (w), 1105 (m), 1073 (w), 1026 (w), 999 (w), 971 (m), 933 (w), 832 (s), 820 (s), 762 (m), 749 (s), 741 (s), 731 (s), 687 (s), 616 (w), 555 (s), 526 (m), 521 (s), 499 (s), 484 (s), 472 (s), 445 (m), 423 (m). HR-ESI-MS (+) m/z: 887.1439 (calculated for [({dppm}₂C}Ag]⁺), 887.1447 (found, Δ = 0.9 ppm). Anal. Calcd for C₅₃H₄₈Ag₁F₁₂N₁P₆: C 52.15%, H 3.96%, N 1.15; Found: C 51.87%, H 3.55%, N 1.49%.

1.10 Synthesis of $[({dppm}_2CH)Ag(H_2O)](PF_6)_2$ (3-H₂O)

211 mg [{dppm}₂CH](PF₆) (**1b**, 220 μmol, 1.0 eq.) and 55.6 mg AgPF₆ (220 μmol, 1.0 eq.) were dissolved in 10 ml CH₂Cl₂ and 2 mL of water-containing MeOH. After stirring at ambient temperature for 16 hour the mixture is filtered through syringe filter and the resulting filtrate is layered with Et₂O. Within five days single crystals of **3-H₂O** are formed, which were separated and dried in a stream of air, yielding 139 mg of 3-H₂O (123 µmol, 72.1 %). Complex 3 is formed, when **3-H₂O** is dried under vacuum. ¹H NMR (500 MHz, CD₂Cl₂) δ: 1.72 (br, 2H, Ag- OH_2), 2.66 (t, 1H, ${}^2J_{PH}$ = 7.9 Hz, P–CH–P), 3.87 (br m, 4H, P–CH₂–P), 7.15-7.24 (br m, 8H, phenyl-H), 7.26-7.34 (br m, 8H, phenyl-H), 7.38-7.53 (br m, 16H, phenyl-H), 7.56-7.65 (br m, 8H, phenyl-H) ppm. ¹³C-APT NMR (126 MHz, CD₂Cl₂) δ: -2.8 (m, P-<u>C</u>H-P), 30.6 (m, P-<u>C</u>H₂-P), 120.9 (s, phenyl-C), 123.2 (s, phenyl-C), 123.9 (s, phenyl-C), 128.4 (s, phenyl-C), 128.7 (t, $J_{PC} = 17.3$ Hz, phenyl-C), 130.1 (t, $J_{PC} = 6.4$ Hz, phenyl-C), 130.2 (t, $J_{PC} = 5.7$ Hz, phenyl-C), 132.5 (t, J_{PC} = 5.5 Hz, phenyl-*C*), 132.5 (s, phenyl-*C*), 133.6 (t, J_{PC} = 9.2 Hz, phenyl-*C*), 134.6 (s, phenyl-*C*), 148.9 (s, phenyl-*C*), 149.4 (s, phenyl-*C*), 152.7 (s, phenyl-*C*) ppm. ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) δ: -144.1 (sept, ¹J_{PF} = 714.1 Hz, PF₆), -22.5 (br, P-Ag-P), 18.4 (m, P-CH-*P*) ppm. IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3620 (w), 3541 (w), 3062 (w), 2971 (w), 2894 (w), 1767 (w), 1609 (w), 1589 (w), 1576 (w), 1506 (w), 1483 (m), 1437 (w), 1409 (w), 1384 (w), 1365 (w), 1351 (w), 1312 (w), 1187 (w), 1176 (w), 1162 (w), 1143 (w), 1108 (m), 1081 (w), 1027 (w), 1015 (w), 999 (w), 948 (w), 832 (s), 784 (m), 776 (m), 755 (m), 738 (s), 724 (m), 687 (s), 655 (m), 617 (w), 555 (s), 520 (m), 499 (s), 470 (m), 441 (m), 418 (m), 406 (m). %. HR-ESI-MS (+) m/z: 887.1439 (calculated for [({dppm}₂C}Ag]⁺), 887.1444 (found, $\Delta = 0.6$ ppm); 445.0759 (calculated for $[(\{dppm\}_2CH\}Ag]^{2+}), 445.0760$ (found, $\Delta = 0.2$ ppm). Anal. Calcd for $C_{51}H_{47}Ag_1F_{12}O_1P_6$: C 51.94%, H 4.52%; Found: C 52.34%, H 4.06%.

1.11 Synthesis of [({dppm}₂CH)Ag(NO₃)](PF₆) (3-NO₃)

120 mg [{dppm}₂CH](PF₆) (**1b**, 130 µmol, 1.0 eq.) and 22 mg AgNO₃ (115 µmol, 1.0 eq.) were dissolved in 2 ml dichloromethane. After stirring for 72 h at ambient temperature the mixture is layered with 10 mL of *n*-hexane. After three days cuboid single crystals are formed, which were separated and dried in vacuo to give 59 mg of complex 3-NO₃ (54 µmol, 41.6 %). ³¹P{¹H} NMR (101 MHz, CD₂Cl₂) δ : -144.4 (sept, ¹J_{PF} = 711.2 Hz, *P*F₆), -14.8 (d br, ¹J_{PAg} = 429.6 Hz, *P*-Ag-P), 19.7 (dd, J_{PP} = 24.8 Hz, J_{PP} = 16.6 Hz, P-CH-P) ppm. ¹H NMR (300 MHz, CD₂Cl₂) δ: 3.36 (br m, 4H, P-CH2-P), 3.58 (br, 1H, P-CH-P), 7.15 (br m, 8H, phenyl-H), 7.30 (br m, 16H, phenyl-H), 7.41 (br m, 8H, phenyl-H), 7.56 (br m, 8H, phenyl-H) ppm. ¹⁹F NMR (470 MHz, CD_2CI_2) δ : -72.8 (d, ${}^1J_{FP}$ = 711.2 Hz, PF₆) ppm. ${}^{13}C$ -APT NMR (126 MHz, CD₂CI₂) δ : 124.5 (s, phenyl-*C*), 125.3 (s, phenyl-*C*), 129.7 (s, phenyl-*C*), 131.5 (s, phenyl-*C*), 132.6 (t, $J_{PC} = 5.0 \text{ Hz}$, phenyl-C), 133.4 (t, J_{PC} = 9.5 Hz, phenyl-C), 133.9 (s, phenyl-C ppm. The CH₂- and (R₃P)CHresonances of the PCP-ligand could not directly be detected by ¹³C-APT NMR spectroscopy, but were in part located in the ¹H,¹³C-HSQC NMR spectrum: $\delta = 30.0$ (P–CH₂–P) ppm. ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ : -3.8 (m, P–<u>C</u>H–P), 29.6 (br d, J_{PC} = 65.5 Hz, P–<u>C</u>H₂–P), 123.3 (br, phenyl-C), 124.5 (br, phenyl-C), 130.0 (br, phenyl-C), 132.1 (s, phenyl-C), 132.5 (br, phenyl-*C*), 133.4 (t, J_{PC} = 9.1 Hz, phenyl-*C*), 134.4 (br, phenyl-*C*) ppm.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3061 (w), 2891 (w), 2814 (w), 1589 (w), 1575 (m), 1554 (m), 1484 (m), 1436 (s), 1404 (m), 1336 (w), 1316 (w), 1227 (m), 1185 (m), 1154 (w), 1141 (w), 1107 (m), 1072 (m), 1029 (m), 1009 (m), 989 (m), 924 (w), 823 (vs), 778 (m), 756 (s), 742 (s), 732 (vs), 687 (vs), 659 (m), 617 (w), 556 (s), 529 (m), 519 (m), 499 (s), 484 (s), 472 (s), 445 (m), 418 (m). HR-ESI-MS (+, MeOH) m/z: 887.1439 (calculated for [({dppm}₂C}Ag]⁺), 887.1441 found, Δ = 0.23 ppm). Anal. Calcd for C₅₁H₄₅Ag₁F₆NO₃P₅: C 55.86%, H 4.14%; Found: C 55.65%; H 4.09%.

2 Spectra

Figure 1 ¹H NMR spectrum of [({dppm}₂CH)CuCl](PF₆) (**2-Cl**) in CD₃CN.

Figure 2 ${}^{31}P{}^{1}H$ NMR spectrum of [({dppm}_2CH)CuCl](PF_6) (2-Cl) in CD_3CN.

Figure 5 ¹H NMR spectrum of [({dppm}₂CH)CuBr](PF₆) (2-Br) in CD₃CN.

Figure 12 ¹H NMR spectrum of $[({dppm}_2CH)Cu(NCMe)](PF_6)(BF_4)$ (2-MeCN) in CD₃CN.

Figure 14 ¹⁹F NMR spectrum of [({dppm}₂CH)Cu(NCMe)](PF₆)(BF₄) (2-MeCN) in CD₃CN.

Figure 18 ¹⁹F NMR spectrum of [({dppm}₂CH)Ag](PF₆)₂ (3) in CD₂Cl₂.

Figure 24 ³¹P{¹H} NMR spectrum of [({dppm}₂CH)AgBr](PF₆) (3-Br) in CD₃CN.

Figure 25 ¹³C-APT NMR spectrum of [({dppm}₂CH)AgBr](PF₆) (3-Br) in CD₃CN.

Figure 27 $^{31}P\{^{1}H\}$ NMR spectrum of [({dppm}_2CH)AgI](PF_6) (3-I) in CD_2CI_2.

Figure 29 ¹H NMR spectrum of [({dppm}₂CH)Ag(NCMe)](PF₆)₂ (3-NCMe) in CD₃CN.

Figure 30 ³¹P{¹H} NMR spectrum of [({dppm}₂CH)Ag(NCMe)](PF₆)₂ (3-NCMe) in CD₃CN.

Figure 34 ¹³C-APT NMR spectrum of [({dppm}₂CH)Ag(H₂O)](PF₆)₂ (3-H₂O) in CD₂Cl₂.

 $[\]label{eq:Figure 36 31} \ensuremath{\mathsf{Figure 36}}\ {}^{31}\mathsf{P}\{{}^1\mathsf{H}\} \ \mathsf{NMR spectrum of } [(\{dppm\}_2\mathsf{CH})\mathsf{Ag}(\mathsf{NO}_3)](\mathsf{PF}_6) \ (\textbf{3-NO}_3) \ in \ \mathsf{CD}_2\mathsf{Cl}_2.$

3 X-Ray Crystallography

The single crystal X-ray diffraction data for the structural analysis were collected using graphite-monochromated Mo-Ka-radiation (λ MoKa= 0.71073) on the pixel detector system Bruker Quest D8 or an imaging plate system STOE IPDS2T. The structures were solved with the Olex2 software by direct methods with SHELXT and refined against F² by full-matrix-least- square techniques using SHELXL.^[3–6] Crystallographic data for **2-X** and **3-X** was deposited at Cambridge Crystallographic Data Centre (CCDC 2172292 - 2172302) and can be obtained free of charge via <u>www.ccdc.cam.ac.uk/</u>. Selected Crystallographic data is summarized in Table S1 and S2.

Complex	2-CI	2-Br	2-I	2-NCMe	3
Formula	C ₅₁ H ₄₅ ClCuP ₅ F ₆ ·1.5(CH ₂ Cl ₂)	C ₅₁ H ₄₅ BrCuP ₅ F ₆ ·CH ₂ Cl ₂	$C_{51}H_{45}CuF_6IP_5$	$C_{53}H_{48}CuNP_6F_{12}$	$C_{51}H_{45}AgF_{12}P_{6}$
M / g·mol⁻¹	1153.10	1155.09	1117.16	1176.28	1179.56
T/K	100	170	170	170	170
Crystal System	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space Group	C2/c	C2/c	C2/c	<i>P</i> 2 ₁	PĪ
a / Å	23.711(1)	23.897(2)	24.032(1)	11.749(1)	12.3098(7)
b/Å	11.715(1)	11.821(1)	11.905(1)	18.185(1)	13.7462(8)
c / Å	38.189(2)	39.320(3)	39.489(2)	13.280(1)	16.8265(10)
α/°	90	90	90	90	87.104(5)
β/°	105.715(1)	109.930(6)	110.076(4)	115.779(2)	79.167(5)
γ/°	90	90	90	90	64.063(4)
V / Å ³	10211.5(8)	10442.3(14)	10611.4(10)	2554.97(13)	2513.2(3)
Ζ	8	8	8	2	2
$ ho_{calc.}$ / g·cm ⁻³	1.500	1.469	1.399	1.529	1.559
μ / mm ⁻¹	0.853	1.496	1.197	0.698	0.673
F(000)	4712	4688	4496	1200	1192
⊖ _{min} /°	2.124	2.422	2.331	2.812	1.648
<i>O</i> max/°	26.427	26.500	25.999	25.998	29.251
Measured Refl.	62444	31960	41551	43743	53058
Independent Refl.	10472 (R _{Int} = 0.0989)	10459 (R _{Int} = 0.1461)	10434 (R _{Int} = 0.0792)	9055 (R _{int} = 0.0327)	13478 (R _{Int} = 0.0582)
Ind. Refl. (I>2σ(I))	7472	7373	8948	8471	11682
Parameters / Restraints	631/0	604/0	606 /47	651/159	664/0
R ₁	0.0491	0.0839	0.0555	0.0667	0.0345
R₁ (all data)	0.0862	0.1211	0.0625	0.0705	0.0411
wR ₂	0.0899	0.2078	0.1652	0.1803	0.0915
wR ₂ (all data)	0.1004	0.2601	0.1754	0.1864	0.0958
GooF	1.038	1.157	1.041	1.091	1.040
Flack parameter				0.006(7)	
Max. peak + hole / $e \cdot Å^{-3}$	0.651/-0.852	1.589 / -0.968	0.707 / -1.077	1.082 / -0.909	0.751 / -0.795
CCDC	2172298	2172295	2172293	2172294	2172299

Table S1. Crystallographic data of complexes 2-CI, 2-Br, 2-I, 2-NCMe and 3.

Complex	3-CI	3-Br	3-I	3-H₂O	3-NCMe	3-OAc
Formula	C ₅₁ H ₄₅ AgClP ₄ ·C ₂ H ₃ O ₂ ·CH ₂ Cl ₂ ·CH ₄ O 1101 08	C ₅₁ H ₄₅ AgBrP ₅ F ₆ ·0.75(C₄H ₁₀ O) 1170.09	C ₅₁ H ₄₅ AgIP ₅ F ₆ ·1.5(CH ₂ Cl ₂) 1288 88	C ₅₁ H ₄₇ AgOP ₆ F ₁₂ ·C ₄ H ₁₀ O 1271 69	C ₅₃ H ₄₈ AgF ₁₂ NP ₆	C ₅₃ H ₄₈ AgF ₆ O ₂ P ₅ ·0.5 (CH ₂ Cl ₂) 1136.09
T/K	100	170	170	100(2)	100(2)	100(2)
Crystal System	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space Group	P21	<i>P</i> 2 ₁	C2/c	P21/c	P21	<i>P</i> 2 ₁
a/Å	11.571(2)	11.695(2)	24.0437(14)	18.913(4)	11.6318(5)	11.818(1)
b/Å	18.782(4)	18.914(4)	11.8271(5)	14.607(3)	18.2132(7)	18.871(1)
c/Å	13.122(3)	13.280(3)	40.075(2)	20.359(4)	13.3823(6)	13.321(1)
α/°	90	90	90	90	90	90
β/°	114.91(3)	115.34(3)	109.918(4)	95.42(3)	115.4520(10)	115.01(1)
γ/°	90	90	90	90	90	90
V / Å ³	2586.4(11)	2654.9(11)	10714.3(10)	5599(2)	2559.91(19)	2692.2(3)
Z	2	2	8	4	2	2
ρ _{calc.} / g⋅cm ⁻³	1.414	1.464	1.493	1.509	1.584	1.401
μ / mm ⁻¹	0.711	1.341	1.206	0.612	0.664	0.632
F(000)	1132	1187	4808	2592	1236	1158
$\Theta_{min}/^{\circ}$	1.711	2.742	2.368	1.718	2.236	2.877
<i>⊖</i> max/°	26.716	29.173	29.200	26.793	27.876	26.733
Measured Refl.	36829	19821	47682	74348	86131	23646
Independent Refl. Ind. Refl. (Ι>2σ(Ι))	10914 (R _{int} = 0.0877) 9198	11400 (R _{Int} = 0.0547) 10115	14163 (R _{int} =0.0665) 11661	11818 (R _{int} = 0.0751) 7808	11912 (R _{Int} = 0.0393) 11283	10100 (R _{Int} = 0.0641) 9816
Parameters /	599/1	627/3	624/0	759/0	659/1	620/3
Restraints <i>R</i> ₁	0.0354	0.0416	0.0432	0.0400	0.0235	0.0472
R₁ (all data)	0.0430	0.0493	0.0553	0.0621	0.0273	0.0499
wR ₂	0.0732	0.1085	0.1084	0.0931	0.0507	0.1358
wR2 (all data)	0.0748	0.1141	0.1183	0.0974	0.0517	0.1337
GooF	0.923	1.015	1.058	0.927	1.037	1.122
Flack parameter	-0.036(12)	0.020(10)			-0.014(4)	-0.04(2)
Max. peak + hole /	1.083/-0.681	1.113/-0.622	1.074 / -1.465	0.736/-0.919	0.577/-0.367	1.739/-0.534
e·A ⁻³ CCDC	2172300	2172292	2172297	2172296	2172301	2172302

Table S2. Crystallographic data of complexes 3-CI, 3-Br, 3-I, 3-H₂O, 3-NCMe, 3-NO₃.

Figure 39 ORTEP plot of 2-CI (thermal ellipsoids are drawn at 50% probability level).

Figure 40 ORTEP plot of 2-Br (thermal ellipsoids are drawn at 50% probability level).

Figure 41 ORTEP plot of 2-I (thermal ellipsoids are drawn at 50% probability level).

Figure 42 ORTEP plot of 2-NCMe (thermal ellipsoids are drawn at 50% probability level).

Figure 43 ORTEP plot of 3 (thermal ellipsoids are drawn at 50% probability level).

Figure 44 ORTEP plot of 3-CI (thermal ellipsoids are drawn at 50% probability level).

Figure 45 ORTEP plot of 3-Br (thermal ellipsoids are drawn at 50% probability level).

Figure 46 ORTEP plot of 3-I (thermal ellipsoids are drawn at 50% probability level).

Figure 47 ORTEP plot of 3-NCMe (thermal ellipsoids are drawn at 50% probability level).

Figure 48 ORTEP plot of 3-H₂O (thermal ellipsoids are drawn at 50% probability level).

Figure 49 ORTEP plot of 3-OAc (thermal ellipsoids are drawn at 50% probability level).

4 Computational Details

DFT calculations were performed with Grimme's B97D3 functional including Grimme's D3 dispersion correction^[7] and the def2-TZVPP basis set after a pre-optimisation with the def2-SVP basis set^[8,9] in Gaussian16.^[10] Crystal structures were used as starting models, where possible. After optimization, a frequency calculation was run to ascertain that a ground state was found (no imaginary modes).

All natural bond orbital (NBO) analysis were performed using the NBO 3.0 package.^[11] Laplacian contour line plots were created with the program Multiwfn.^[12] Cartesian coordinates of the discussed structure are listed in the following:

2-CI open form (with hydrogen bridge bond)

CI	8.93850	8.25970	6.25560
Cu	8.41430	9.24420	4.31050
Ρ	8.28990	8.16060	2.35660
Ρ	7.84360	11.42190	4.23740
С	5.64400	8.67250	4.71940
С	8.98490	9.03890	0.91580
С	8.93180	6.46070	2.18490
С	6.48660	8.00050	1.93470
С	8.50300	12.49000	2.90440
С	8.08630	12.39580	5.75780
С	6.01710	11.51480	3.88670
Ρ	5.50900	7.56210	3.42830
Ρ	5.05440	10.27250	4.83070
Н	6.29360	8.36620	5.53010
С	10.24070	9.63770	1.10100
С	8.35950	9.13480	-0.33400
С	9.49600	5.85370	3.31350
С	8.89140	5.77100	0.96480
Н	6.14480	8.98590	1.60270
Н	6.29700	7.28060	1.13380
С	9.48840	13.44650	3.18670
С	8.11060	12.29020	1.57230
С	7.39080	13.58260	6.02760
С	9.03830	11.92750	6.67380
Н	5.62100	12.51780	4.06630
Н	5.89370	11.28580	2.82430
С	3.81500	7.34910	2.81630
С	6.09380	5.94260	3.95700
С	3.35110	10.42690	4.24080
С	5.10790	10.82630	6.54470
Н	10.72080	9.58660	2.07500
С	10.86500	10.30530	0.05160
С	8.98210	9.81590	-1.38110
Н	7.38880	8.67850	-0.50370
С	10.00350	4.55730	3.22020
Н	9.52510	6.39170	4.25740

С	9.39640	4.47640	0.87980
Н	8.48300	6.24880	0.07830
Н	9.80630	13.61120	4.21090
С	10.05700	14.19490	2.15550
Н	7.38450	11.52470	1.31730
С	8.66870	13.04960	0.54830
Н	6.66470	13.97020	5.31910
С	7.63200	14.28160	7.20690
Н	9.54970	10.98810	6.48560
С	9.29140	12.64240	7.84440
С	3.30650	8.11850	1.76250
С	2.98190	6.42710	3.46670
С	6.58670	5.70640	5.24450
С	6.06080	4.89930	3.01640
С	2.95610	11.36790	3.28220
С	2.39630	9.56940	4.80910
С	4.19210	11.80200	6.96610
С	6.11070	10.37600	7.41380
Č	10.23610	10.39710	-1.19150
Ĥ	11.83430	10.76850	0.20810
Н	8.48960	9.88570	-2.34680
Н	10.43780	4.08800	4.09790
С	9.95310	3.86850	2.00900
Ĥ	9.36760	3.94480	-0.06710
С	9.64560	14.00430	0.83640
Ĥ	10.81790	14.93420	2.38810
н	8.35240	12.88200	-0.47620
С	8.58560	13.81390	8.11540
Ĥ	7.08130	15.19400	7.41630
Н	10.02990	12.27270	8.54960
Н	3.93320	8.84220	1.25200
C	1.97890	7.96870	1.36530
Č	1.66020	6.27240	3.05780
Ĥ	3.37250	5.82830	4.28370
н	6.65520	6.50240	5.97420
С	7.04300	4.43380	5.58590
С	6.51780	3.63440	3.36500
H	5.67850	5.07340	2.01510
Н	3.67820	12.04330	2.83700
С	1.61890	11.44550	2.89080
C	1.06510	9.65390	4.41800
Н	2.70740	8.83580	5.54610
Н	3.41190	12.14810	6.29500
С	4.27900	12.32120	8.25540
H	6.85150	9.64670	7.09770
Ċ	6.18910	10.90600	8.69970
H	10.71890	10.92610	-2.00770
Н	10.35240	2.86070	1.93920
Н	10.08510	14.59310	0.03690

Н	8.77390	14.36350	9.03310
С	1.15690	7.04340	2.00790
Н	1.58840	8.57510	0.55400
Н	1.02340	5.54850	3.55730
С	7.00830	3.40030	4.65220
Н	7.43850	4.26130	6.58170
Н	6.50090	2.83470	2.63160
Н	1.31740	12.17600	2.14610
С	0.67480	10.59110	3.45770
Н	0.33170	8.98450	4.85610
Н	3.56610	13.07190	8.58280
С	5.27890	11.87530	9.12150
Н	6.97550	10.56480	9.36520
Н	0.12520	6.92270	1.69140
Н	7.37150	2.41280	4.92090
Н	-0.36540	10.65290	3.15230
Н	5.34880	12.28510	10.12470

2-C	I closed for	rm (with Cι	u–C bond)
CI	8.99790	8.27680	6.30640
Cu	8.27680	9.17950	4.38140
Ρ	8.25400	8.16690	2.38350
Ρ	7.84240	11.38870	4.22470
С	5.69440	8.69620	4.69950
С	8.97080	9.08900	0.98190
С	8.88510	6.47010	2.14650
С	6.45090	8.03550	1.93720
С	8.54610	12.43520	2.89670
С	8.06820	12.39200	5.72980
С	6.02430	11.50050	3.83800
Ρ	5.49930	7.55860	3.42390
Ρ	5.05280	10.29080	4.79760
Н	5.82780	8.23860	5.67180
С	10.21470	9.69660	1.21340
С	8.38280	9.19360	-0.28520
С	9.52380	5.85610	3.23040
С	8.77970	5.79450	0.92230
Н	6.11600	9.02790	1.61980
Н	6.24660	7.32640	1.13060
С	9.63130	13.27550	3.18650
С	8.09940	12.33820	1.57070
С	7.39040	13.59720	5.95840
С	8.99250	11.92600	6.67490
Н	5.62340	12.50500	3.99510
Н	5.90890	11.25260	2.77930
С	3.79810	7.30110	2.84260
С	6.10890	5.95490	3.96810
С	3.34530	10.46150	4.21180

С	5.10080	10.82110	6.51620
Н	10.66300	9.63970	2.20200
С	10.86540	10.37980	0.19040
С	9.03210	9.88970	-1.30540
Н	7.42170	8.73070	-0.48930
С	10.04090	4.56750	3.09010
н	9.60320	6.38440	4.17690
С	9.29260	4.50720	0.79020
н	8.31460	6.27760	0.06720
н	9.99210	13.36150	4.20650
С	10.24280	14.01160	2.17210
Ĥ	7.29310	11.66300	1.30260
C	8 70200	13 08690	0 56350
H	6 68850	13 98370	5 22480
C	7 61940	14 31690	7 12780
й	9 48910	10 97260	6 51730
С	9 23520	12 66250	7 83450
č	3 26590	8 03890	1 77710
č	2 97410	6 40930	3 54590
c	6 75880	5 78020	5 19500
c	5 95730	4 86810	3 09050
c	2 95960	11 37170	3 22000
c	2 38350	9 62100	4 79400
c	4 18690	11 79350	6 95020
c	6 10260	10 35410	7 37900
c	10 27530	10.00410	-1 07080
н	11 82440	10.85100	0 38220
н	8 56930	9 96620	-2 28530
н	10 53370	4 09300	3 93350
$\hat{\mathbf{C}}$	9 92400	3 89260	1 87580
н	9 21180	3 98640	-0 15960
\mathbf{C}	9.77640	13 92630	0.10000
й	11 07990	14 66060	2 41240
н	8 34110	13 00060	-0.45650
$\hat{\mathbf{C}}$	8 54540	13 85180	8.06580
н	7 08260	15 24430	7,30550
н	9 95290	12 29540	8 56220
н	3 88390	8 74060	1 22660
\mathbf{C}	1 92860	7 88270	1./1690
C	1.6/100	6 24920	3 17540
н	3 38030	5 83550	1 37350
н	6 96330	6 61700	5 85140
\hat{c}	7 23340	4 51800	5 54810
C C	6 4 4 6 5 0	3 61680	3.44640
Ц	0.44030 5 45700	4 00900	2 12500
Ц	J.4J/90 3 68610	4.33030 12 N22NN	2.10000
\sim	1 62550	11 /20/0	2.10030
C C	1 05560	0 60640	1 20110
С Ц	1.00000	9.09040 8 00600	4.09140 5 55500
11	2.00000	0.90000	0.00000

Н	3.40900	12.15180	6.28300
С	4.27500	12.29350	8.24660
Н	6.84430	9.63160	7.04830
С	6.17840	10.86270	8.67370
Н	10.77900	11.01870	-1.86630
Н	10.32920	2.89040	1.76930
Н	10.24880	14.50660	0.07340
Н	8.72540	14.41820	8.97500
С	1.11720	6.98540	2.11090
Н	1.52190	8.46210	0.59390
Н	1.01340	5.54750	3.71560
С	7.07790	3.43910	4.68030
Н	7.74810	4.39320	6.49550
Н	6.33960	2.78210	2.76100
Н	1.33180	12.14750	2.04610
С	0.67470	10.60520	3.40020
Н	0.31760	9.04130	4.84310
Н	3.56590	13.04330	8.58390
С	5.27160	11.82960	9.10770
Н	6.96280	10.50860	9.33480
Н	0.07760	6.85980	1.82360
Н	7.46040	2.46070	4.95520
Н	-0.36290	10.65960	3.08460
Н	5.34160	12.22470	10.11680

3-CI open form (with hydrogen bridge bond)

Ag	-0.01680	-1.51230	-1.10110
Ρ	2.03530	-1.50870	0.15900
Ρ	-2.14440	-1.46150	0.06990
CI	-0.09620	-0.82490	-3.48040
С	-0.02670	1.53420	-0.51740
С	3.61520	-1.59060	-0.74520
С	2.10580	0.10280	1.09270
С	2.18280	-2.75390	1.48830
С	-2.11370	0.07460	1.13920
С	-3.64420	-1.32230	-0.94580
С	-2.48360	-2.72540	1.34960
Ρ	-1.52550	1.62120	0.30970
Ρ	1.57260	1.56850	0.09170
Н	-0.11150	1.21770	-1.55320
С	3.57260	-1.54910	-2.14610
С	4.84540	-1.71220	-0.07900
Н	1.40540	0.01600	1.93260
Н	3.10630	0.29180	1.50060
С	2.54850	-2.46170	2.81110
С	1.88160	-4.08180	1.13800
Н	-3.09970	0.26670	1.58050
Н	-1.41740	-0.15640	1.95510

С	-4.85510	-0.79360	-0.47030
С	-3.55550	-1.77670	-2.27080
С	-3.71610	-3.38470	1.46730
С	-1.43320	-3.06270	2.22080
С	-1.50680	2.87290	1.62180
Ċ	-2.82390	2.05080	-0.87240
Ċ	2 74830	1 68680	-1 27390
č	1 89710	2 97290	1 20150
й	2 61680	-1 45750	-2 65950
$\hat{\mathbf{C}}$	4 76310	-1 61650	-2 87440
й	4 87530	-1 77420	1 00680
\mathbf{C}	6 02930	-1 77930	-0.81290
ĉ	2 60950	-3 /8010	3 76780
й	2 70000	-0.40010	3 10510
$\hat{\mathbf{C}}$	1 05700	5 00770	2 09090
Ц	1.57560	-3.09770	2.00900
$\hat{\mathbf{C}}$	5.06400	-4.31000	1 21110
	-5.90490	-0.72280	-1.31110
	-4.93570	-0.43470	0.55200
	-2.00440	-2.13430	-2.65900
	-4.07400	-1.71860	-3.10460
	-4.52870	-3.14030	0.78760
	-3.89610	-4.35790	2.45510
П	-0.45730	-2.59610	2.10800
	-1.62180	-4.02420	3.21320
	-1.15920	4.18350	1.25380
C	-1.84890	2.59050	2.95180
C	-2.77660	1.55390	-2.18430
C	-3.91660	2.82080	-0.44410
C	2.35160	1.69200	-2.61/10
C	4.112/0	1.76490	-0.94200
C	1.77560	2.86410	2.59380
C	2.23840	4.20780	0.62720
С	5.98740	-1.73130	-2.21180
Н	4.72940	-1.58300	-3.96010
Н	6.98170	-1.88050	-0.29830
С	2.31840	-4.79830	3.40830
Н	2.89250	-3.24270	4.79030
Н	1.72340	-6.12020	1.80620
С	-5.87670	-1.19150	-2.62720
Н	-6.89750	-0.30410	-0.94190
Н	-4.59870	-2.06980	-4.13020
С	-2.85540	-4.67420	3.33230
Н	-4.85220	-4.86880	2.53650
Н	-0.79950	-4.27740	3.87690
Н	-0.88890	4.40090	0.22450
С	-1.15460	5.19670	2.20900
Η	-2.12790	1.58520	3.25120
С	-1.83740	3.61030	3.90750
С	-3.82390	1.83730	-3.06090

Н	-1.95300	0.93360	-2.53070
Н	-3.95120	3.21050	0.56980
С	-4.95630	3.10110	-1.33180
Н	1.31100	1.59530	-2.90140
С	3.31940	1.77910	-3.62060
С	5.07000	1.85220	-1.94830
Н	4.42870	1.76310	0.09800
Н	1.50850	1.91770	3.05430
С	1.99110	3.98050	3.40410
С	2.46380	5.31740	1.44110
Н	2.33890	4.29500	-0.45140
Н	6.91080	-1.79130	-2.78260
Н	2.37010	-5.58940	4.15190
Н	-6.74430	-1.13680	-3.28000
Н	-3.00050	-5.43170	4.09820
С	-1.49290	4.91150	3.53660
Н	-0.88280	6.20780	1.92000
Н	-2.10310	3.38670	4.93720
Н	-3.78790	1.44430	-4.07270
С	-4.91010	2.60920	-2.63930
Н	-5.79760	3.70530	-1.00280
С	4.67250	1.86230	-3.29010
Н	3.00620	1.76820	-4.66060
Н	6.12310	1.90540	-1.68760
Н	1.88830	3.89150	4.48200
С	2.33990	5.20510	2.82980
Н	2.74040	6.26760	0.99210
Н	-1.48790	5.70430	4.28000
Η	-5.72120	2.82710	-3.32920
Η	5.42110	1.92660	-4.07550
Η	2.51690	6.07070	3.46290

3-CI closed form (with Cu–C bond)						
Ag	-0.05900	-1.08410	-1.35280			
Ρ	1.83920	-1.57940	0.09680			
Ρ	-2.07300	-1.29400	0.05830			
CI	-0.22040	-0.54560	-3.74130			
С	0.12100	1.46080	-0.52620			
С	3.53720	-1.81720	-0.53000			
С	1.97820	-0.05970	1.16660			
С	1.60490	-2.91320	1.31930			
С	-1.94810	0.19420	1.16880			
С	-3.72250	-1.12240	-0.69680			
С	-2.29380	-2.65110	1.26350			
Ρ	-1.37930	1.69040	0.28730			
Ρ	1.69600	1.44720	0.16790			
Н	0.11230	1.85870	-1.53410			
С	3.71120	-1.88050	-1.91770			

С	4.64480	-1.95800	0.31820
Н	1.19450	-0.11930	1.92790
Н	2.94400	0.02230	1.67180
С	2.03860	-2.85150	2.65070
С	0.97810	-4.08020	0.85600
Ĥ	-2 90080	0 40170	1 66310
н	-1 20210	-0.02180	1 93860
$\hat{\mathbf{C}}$	-4 89030	-1 04920	0.07800
c	-3 80790	-1 08650	-2 09370
C	-2 96850	-3 80310	0.82620
	1 72500	2 64290	2 54950
C C	-1.27240	2.04200	1 54620
	2 62560	2.33320	0.02520
	-2.02500	2.12900	-0.93530
	2.91930	1.45620	1 26670
	2.09150	2.83660	1.20070
	2.00140	-1.76910	-2.57260
	4.98610	-2.07010	-2.45140
П	4.51630	-1.94120	1.39700
	5.91570	-2.14270	-0.21920
	1.85920	-3.94390	3.49920
Н	2.52420	-1.95880	3.03370
C	0.81150	-5.1/300	1.70190
Н	0.61400	-4.12250	-0.16720
C	-6.13040	-0.92760	-0.54110
н	-4.83090	-1.10/80	1.16180
H	-2.90180	-1.13600	-2.69310
C	-5.05540	-0.96960	-2.70890
H	-3.40380	-3.82950	-0.16850
C	-3.09840	-4.90680	1.66570
Н	-1.17850	-1.78480	2.91100
С	-1.87290	-3.74680	3.38810
С	-0.96500	4.27610	1.12930
С	-1.73200	2.79110	2.88350
С	-2.42360	1.91150	-2.30400
С	-3.84340	2.65430	-0.47440
С	2.56300	1.30640	-2.49760
С	4.27260	1.56400	-0.78830
С	1.86910	2.76550	2.64810
С	2.52780	4.04250	0.69720
С	6.08700	-2.19820	-1.60570
Н	5.11600	-2.11480	-3.52850
Н	6.77170	-2.25410	0.44030
С	1.25280	-5.10720	3.02400
Н	2.19920	-3.88830	4.52940
Н	0.32060	-6.06850	1.33430
С	-6.21290	-0.88800	-1.93680
Н	-7.03340	-0.87230	0.06010
Н	-5.11730	-0.93980	-3.79250
С	-2.55720	-4.88030	2.95230

Н	-3.63010	-5.78660	1.31520
Н	-1.43560	-3.72120	4.38130
Н	-0.67490	4.43710	0.09510
С	-0.92420	5.32720	2.03730
Н	-2.05090	1.81340	3.22760
С	-1.68640	3.84950	3.79240
С	-3.43460	2.23950	-3.20510
Н	-1.52320	1.43560	-2.68160
Н	-4.00040	2.82830	0.58640
С	-4.85020	2.96440	-1.38310
Н	1.53450	1.14320	-2.80280
С	3.55910	1.28430	-3.47300
С	5.25760	1.52860	-1.76830
Н	4.55430	1.67590	0.25460
Н	1.52140	1.84520	3.10610
С	2.08670	3.88450	3.45010
С	2.75380	5.15400	1.50430
Н	2.69910	4.10500	-0.37310
Н	7.07870	-2.34750	-2.02280
Н	1.11430	-5.95660	3.68610
Н	-7.18230	-0.79790	-2.41850
Н	-2.66390	-5.73940	3.60770
С	-1.28460	5.11550	3.37100
Н	-0.60460	6.31110	1.70860
Н	-1.96830	3.68220	4.82760
Н	-3.27510	2.05810	-4.26340
С	-4.64340	2.76400	-2.75010
Н	-5.79310	3.36660	-1.02560
С	4.90050	1.39710	-3.11310
Н	3.27410	1.15470	-4.51230
Н	6.30260	1.59920	-1.48380
Н	1.90650	3.82370	4.51880
С	2.53350	5.07690	2.88110
Н	3.10400	6.08030	1.05890
Н	-1.24970	5.93790	4.07920
Η	-5.43000	3.00970	-3.45740
Η	5.67250	1.36930	-3.87630
Н	2.70880	5.94530	3.50890

5 References

- [1] K. Sommer, Zeitschrift für Anorg. und Allg. Chemie **1970**, 376, 37–43.
- [2] C. Reitsamer, S. Stallinger, W. Schuh, H. Kopacka, K. Wurst, D. Obendorf, P. Peringer, *Dalt. Trans.* **2012**, *41*, 3503–3514.
- [3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* **2009**, *42*, 339–341.
- [4] L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Puschmann, *Acta Crystallogr. Sect. A Found. Crystallogr.* **2015**, *71*, 59–75.
- [5] G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122.
- [6] G. M. Sheldrick, *Acta Crystallogr. Sect. A Found. Crystallogr.* **2015**, *71*, 3–8.
- [7] S. Grimme, J. Comput. Chem. 2006, 27, 1787–1799.
- [8] F. Weigend, R. Ahlrichs, K. A. Peterson, T. H. Dunning, R. M. Pitzer, A. Bergner, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297.
- [9] F. Weigend, C. Hättig, H. Patzelt, R. Ahlrichs, S. Spencer, A. Willets, *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057.
- [10] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al., **2016**.
- [11] A. E. Reed, J. E. Carpenter, F. Weinhold, *NBO, Version 3.0*, n.d.
- [12] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.