$Cd[B_2(SO_4)_4] \& H_2[B_2(SO_4)_4] -$

A phyllosilicate analogue borosulfate and its homeotypic heteropolyacid

Matthias Hämmer^a, Leonard C. Pasqualini^b, Sean S. Sebastian^c, Hubert Huppertz^b, Henning A. Höppe^{a*}, and Jörn Bruns^{c*}

[a] Dr. Matthias Hämmer, and Prof. Dr. Henning A. Höppe, Institut für Physik
Universität Augsburg
Universitätsstraße 1, 86159 Augsburg, Germany.
E-mail: henning@ak-hoeppe.de

[b] Leonard C. Pasqualini, M.Sc., and Univ.-Prof. Dr. Hubert Huppertz
Institute of General, Inorganic and Theoretical Chemistry
University of Innsbruck
Innrain 80-82, 6020 Innsbruck, Austria
E-mail: Hubert.Huppertz@uibk.ac.at

[c] Sean S. Sebastian, M.Sc., and Dr. Jörn Bruns*
Institute of Inorganic Chemistry
University of Cologne
Greinstrasse 6, 50939 Cologne, Germany
E-mail: j.bruns@uni-koeln.de

Figure S1. Single crystals of $H_2[B_2(SO_4)_2]$ under a polarization microscope.

Figure S2. Top two ampoules: Single crystals and bulk material of $H_2[B_2(SO_4)_2]$ (starting materials: 200 mg B_2O_3 and 0.4 mL SO₃); Bottom two ampoules: Liquid product of an identical reaction as performed for the first two ampoules, however with exactly 0.1 mL less SO₃ (starting materials: 200 mg B_2O_3 and 0.3 mL SO₃).

Figure S3. Destroyed polyacetate foil after 10 minutes contact of crystals of H₂[B₂(SO₄)₂] for PXRD.

Figure S4. Single crystals of $Cd[B_2(SO_4)_2]$ under a polarization microscope.

Figure S5. Rietveld refinement of the powder X-ray diffraction pattern of $Cd[B_2(SO_4)_2]$ prepared by synthesis method **I**.

Figure S6. Rietveld refinement of the powder X-ray diffraction pattern of $Cd[B_2(SO_4)_2]$ prepared by synthesis method **II**; details are found in table S1.

$M \ / \ \mathrm{g} \ \mathrm{mol}^{-1}$	518.26				
Temperature / K	298(2)				
Space group	$P2_1/n$ (no. 14)				
<i>a</i> / pm	809.25(1)				
<i>b</i> / pm	797.00(1)				
<i>c</i> / pm	938.48(2)				
β / °	109.857(1)				
Volume / 10 ⁶ pm ³	569.31(1)				
Z	2				
$ ho_{ m calcd}$ / g cm ⁻³	3.02				
Radiation; wavelength λ / Å	CuK_{α} ; 1.54184				
Diffractometer	Bruker D8 Advance				
heta range / deg	2.5–40				
Observed reflections	350				
Refined parameters	67				
<i>R</i> _{Bragg}	0.010				
R _p	0.014				
$R_{ m wp}$	0.021				
GooF	2.35				

Table S1. Crystal data and structure refinements of $Cd[B_2(SO_4)_4]$ determined from powder XRD datavia Rietveld refinement

· · · · · · · · · · · · · · · · · · ·	
Formula weight	203.94
Temperature/K	173(2)
Crystal system	triclinic
Space group	<i>P</i> 1̄ (no. 2)
<i>a</i> / Å	7.7014(7)
b/ Å	8.5004(8)
<i>c</i> / Å	8.7264(8)
a/ °	92.41(1)
eta/ °	97.85(1)
γ/ °	90.31(1)
Volume/ Å ³	565.39(9)
Ζ	2
$ ho_{ m calc}$ / g cm ⁻³	2.396
Absorption coefficient/ mm ⁻¹	0.942
<i>F</i> (000)	408
Crystal size/ mm ³	0.1 imes 0.095 imes 0.09
2θ range for data collection	4.7 to 75.8°
Index ranges	$-13 \le h \le 13$; $-14 \le k \le 14$; $-15 \le l \le 15$
Reflections collected	46145
Independent reflections	6113 [$R_{int} = 0.0366$]
Completeness to θ	100%
Absorption correction	multi-scan
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	6113 / 0 / 208
Goodness-of-fit on F^2	1.039
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0252; wR_2 = 0.0683$
Final <i>R</i> indexes [all data]	$R_1 = 0.0302; wR_2 = 0.0707$
Largest diff. peak/hole/ e ⁻ /Å ⁻³	1.03 / -0.62
CSD number	2207483

Table S2. Crystal data and structure refinement for $H_2[B_2(SO_4)_4]$.

atom	x	у	Z	$U_{ m eq}$
S 1	8091.1(3)	11403.3(2)	1847.5(2)	8.49(4)
S2	3384.1(3)	9208.8(3)	3498.1(2)	8.67(4)
S 3	8153.1(3)	6405.3(2)	3943.5(2)	7.52(4)
S4	3277.6(3)	4503.0(2)	1140.9(2)	8.50(4)
B1	6876(1)	9374(1)	3787(1)	8.5(1)
B2	6799(1)	4314(1)	1656(1)	8.8(1)
01	7099(1)	10394(1)	569.9(9)	20.3(2)
O2	9741(1)	11942(1)	1569(1)	18.1(1)
O3	8202.6(9)	10418.6(8)	3241.4(8)	10.6(1)
O4	7204.9(9)	9429.5(8)	5469.5(8)	10.9(1)
O5	7154.5(9)	7757.4(8)	3195.9(8)	10.7(1)
O6	5140.2(9)	9852.8(8)	3096.2(8)	10.3(1)
O7	2176(1)	9192.1(1)	2092.8(8)	16.0(1)
O 8	3635(1)	7808.3(8)	4320.6(9)	13.4(1)
O9	9845.6(9)	6802.4(9)	4689.8(9)	14.5(1)
O10	6952(1)	5694.2(9)	4942.8(9)	14.4(1)
011	8222.6(9)	5273.7(8)	2584.5(8)	10.0(1)
O12	7147(1)	4219.1(8)	52.8(8)	11.3(1)
013	6862.1(9)	2702.4(8)	2223.4(8)	11.9(1)
O14	2129(0)	4832.4(1)	2279.4(8)	14.8(1)
O15	3280(1)	2986.0(8)	402.5(9)	15.9(1)
O16	5130.5(9)	4996.2(8)	1914.7(8)	10.7(1)
H1	7380(30)	10550(30)	-280(30)	53(7)
H2	7340(30)	5560(30)	5850(30)	58(8)

Table S3. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for H₂[B₂(SO₄)₄]. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U_{13}	U_{12}
S 1	11.17(8)	5.45(8)	9.52(8)	1.22(6)	3.52(6)	0.16(6)
S2	9.99(8)	9.20(8)	6.75(8)	-0.58(6)	1.21(6)	0.61(6)
S 3	8.78(8)	6.05(8)	7.48(8)	0.20(6)	0.26(6)	0.46(6)
S 4	9.45(8)	8.54(8)	7.72(8)	0.87(6)	1.77(6)	-1.10(6)
B1	10.7(3)	6.8(3)	8.1(3)	0.9(3)	1.9(3)	1.4(3)
B2	10.6(3)	7.2(3)	8.6(3)	0.9(3)	1.3(3)	1.3(3)
01	33.9(4)	17.0(3)	10.1(3)	-4.4(2)	5.2(3)	-10.2(3)
O2	12.8(3)	17.0(3)	26.7(4)	8.5(3)	8.5(3)	0.6(2)
O3	11.8(3)	9.0(2)	11.2(3)	4.3(2)	1.4(2)	-0.1(2)
O4	15.2(3)	10.1(3)	7.4(2)	0.2(2)	2.1(2)	4.2(2)
O5	16.6(3)	5.6(2)	9.4(2)	0.8(2)	0.2(2)	2.9(2)
O6	10.0(2)	10.9(3)	10.5(2)	3.7(2)	2.2(2)	1.2(2)
O7	13.9(3)	25.0(4)	8.2(3)	-2.1(2)	-1.4(2)	0.2(3)
08	17.3(3)	8.2(3)	15.4(3)	1.9(2)	4.1(2)	-0.4(2)
O9	11.2(3)	15.1(3)	15.6(3)	-2.2(2)	-3.0(2)	-1.5(2)
O10	15.0(3)	18.2(3)	10.6(3)	5.8(2)	2.7(2)	-1.8(2)
011	9.6(2)	9.0(2)	10.8(2)	-3.3(2)	0.85(19)	1.4(2)
O12	16.2(3)	10.4(3)	7.6(2)	2.0(2)	2.3(2)	4.0(2)
013	14.9(3)	7.0(2)	15.0(3)	3.4(2)	5.6(2)	3.0(2)
O14	12.4(3)	23.2(3)	9.9(3)	2.7(2)	4.6(2)	-0.3(2)
O15	20.8(3)	8.1(3)	18.0(3)	-1.6(2)	0.4(3)	-2.3(2)
O16	8.6(2)	10.7(3)	12.0(3)	-1.9(2)	0.0(2)	1.5(2)

Table S4. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for H₂[B₂(SO₄)₄]. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka\times b\times U_{12}]$

atom	atom	bond length/ Å
S 1	01	1.4975(8)
S 1	O2	1.4040(8)
S 1	O3	1.4985(7)
S 1	O13 ¹	1.5128(7)
S 2	$O4^2$	1.5449(7)
S 2	O6	1.5457(7)
S 2	07	1.4339(8)
S 2	O 8	1.4164(7)
S 3	05	1.5078(7)
S 3	O9	1.4078(7)
S 3	O10	1.4969(7)
S 3	011	1.5022(7)
S 4	O12 ³	1.5420(7)
S 4	014	1.4381(7)
S 4	015	1.4172(8)
S 4	016	1.5410(7)
03	B1	1.489(1)
04	B1	1.455(1)
05	B1	1.474(1)
06	B1	1.457(1)
011	B2	1.488(1)
012	B2	1.459(1)
013	B2	1.475(1)
016	B2	1.454(1)

Table S5. Experimental bond lengths for $H_2[B_2(SO_4)_4]$.

 $\frac{1}{1+x,1+y,+z;\ ^{2}1-x,2-y,1-z;\ ^{3}1-x,1-y,-z}$

atom	atom	atom	angle/°	atom	atom	atom	angle/°
01	S 1	03	104.51(4)	015	S4	016	111.20(4)
O1	S 1	O13 ¹	106.30(5)	B1	03	S 1	130.74(6)
O2	S 1	01	115.48(5)	B1	O4	$S2^2$	123.75(6)
O2	S 1	03	112.47(5)	B1	05	S 3	131.15(6)
O2	S 1	O13 ¹	114.05(5)	B1	06	S2	125.44(6)
03	S 1	O13 ¹	102.82(4)	B2	011	S 3	129.96(6)
O4 ²	S2	06	101.95(4)	B2	012	S 4 ³	125.82(6)
07	S2	$O4^2$	105.57(4)	B2	013	$S1^4$	127.11(6)
07	S2	06	106.33(4)	B2	016	S 4	128.21(6)
08	S2	$O4^2$	111.23(4)	O4	B1	03	107.22(7)
08	S2	06	111.18(4)	O4	B1	05	109.21(7)
08	S2	O7	119.06(5)	O4	B1	06	116.30(7)
O9	S 3	05	114.60(4)	O5	B1	03	107.82(7)
09	S 3	O10	115.43(5)	O6	B1	03	108.41(7)
09	S 3	011	111.38(4)	O6	B1	05	107.59(7)
O10	S 3	05	105.37(4)	012	B2	011	108.14(7)
O10	S 3	011	107.01(4)	O12	B2	013	107.70(7)
011	S 3	05	101.88(4)	013	B2	011	108.74(7)
014	S 4	O12 ³	104.38(4)	O006	B2	011	108.04(7)
O14	S 4	016	106.03(4)	O006	B2	012	115.89(7)
015	S 4	O12 ³	111.13(4)	O006	B2	013	108.16(7)
015	S 4	O14	120.23(5)				

Table S6. Experimental bond angles for $H_2[B_2(SO_4)_4]$.

¹+*x*,1+*y*,+*z*; ²1-*x*,2-*y*,1-*z*; ³1-*x*,1-*y*,-*z*; ⁴+*x*,-1+*y*,+*z*

D	Η	Α	<i>d</i> (D-H)/ Å	<i>d</i> (H-A)/ Å	d(D-A) / Å	D-H-A/ $^{\circ}$
O1 ¹	H1	$O7^2$	0.82	1.69	2.501(1)	175.9
O10	H2	O14 ³	0.82	1.68	2.491(1)	172.2

Table S7. Hydrogen bonds in $H_2[B_2(SO_4)_4]$.

¹1-x,2-y,1-z; ²x,y,1+z; ³1-x,1-y,1-z

Figure S7. Asymmetric unit of $H_2[B_2(SO_4)_4]$. The thermal ellipsoids are set on 90% probability level. (Symmetry operators: ¹1-*x*,1-*y*,-*z*; ²+*x*,1+*y*,+*z*).

Formula weight	518.	25
Temperature/K	173(2)	250(2)
Crystal system	monoc	linic
Space group	$P2_{1}/n$ (n	o. 14)
<i>a</i> / Å	8.061(1)	8.076(1)
b/ Å	7.9599(5)	7.975(19
<i>c</i> / Å	9.405(1)	9.395(1)
β/ °	109.96(1)	110.01(1)
Volume/ Å ³	567.2(1)	568.6(2)
Ζ	2	
$ ho_{ m calc}$ / g cm $^{-3}$	3.035	3.027
Absorption coefficient/ mm ⁻¹	2.765	2.76
<i>F</i> (000)	500	500
Crystal size/ mm ³	$0.172 \times 0.06 \times 0.06$	$0.05 \times 0.04 \times 0.02$
2θ range for data collection	5.8 - 82.6°	5.8-67.0°
Index range $h k l$	$\pm 14 \pm 14 \pm 17$	$\pm 11 \pm 11 \pm 12$
Reflections collected	56664	23626
Independent reflections	3799	2230
Completeness to θ	100	%
Absorption correction	multi-	scan
Refinement method	Full-matrix least	-squares on F^2
Data/restraints/parameters	3799 / 0 / 107	2230 / 0 / 106
Goodness-of-fit on F^2	1.138	1.11
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0143; wR_2 = 0.0379$	$R_1 = 0.030; wR_2 = 0.064$
Final <i>R</i> indexes [all data]	$R_1 = 0.0163; wR_2 = 0.0386$	$R_1 = 0.043; wR_2 = 0.067$
Largest diff. peak/hole/ $e^{-}/Å^{-3}$	0.705 / -0.448	0.87 / -0.86
CSD number	2176209	2171676

 Table S8. Crystal data and structure refinement for Cd[B2(SO4)4] determined from single-crystal XRD.

x	у	Z	$m{U}_{ m eq}$
5000	0	5000	6.68(2)
6370(2)	4713(2)	3582.6(9)	7.1(2)
7930.0(2)	1735.3(2)	3463.0(2)	6.84(3)
3099.2(2)	4184.0(2)	3600.0(2)	5.49(3)
6500.1(8)	3088.9(7)	2926.9(6)	10.16(8)
4457.4(8)	5103.6(7)	3087.5(7)	8.12(8)
2799.1(8)	5387.4(7)	4747.4(6)	8.46(8)
7308.9(9)	474.9(9)	4265.3(8)	15.0(2)
9621.7(8)	2406.2(9)	4229.3(8)	16.9(2)
3788.7(8)	2618.7(7)	4306.4(6)	9.58(8)
1496.6(8)	4105.1(8)	2337.2(6)	12.26(9)
7744.0(8)	1061.4(8)	1897.8(6)	11.13(9)
	x 5000 6370(2) 7930.0(2) 3099.2(2) 6500.1(8) 4457.4(8) 2799.1(8) 7308.9(9) 9621.7(8) 3788.7(8) 1496.6(8) 7744.0(8)	xy500006370(2)4713(2)7930.0(2)1735.3(2)3099.2(2)4184.0(2)6500.1(8)3088.9(7)4457.4(8)5103.6(7)2799.1(8)5387.4(7)7308.9(9)474.9(9)9621.7(8)2406.2(9)3788.7(8)2618.7(7)1496.6(8)4105.1(8)7744.0(8)1061.4(8)	xyz5000050006370(2)4713(2)3582.6(9)7930.0(2)1735.3(2)3463.0(2)3099.2(2)4184.0(2)3600.0(2)6500.1(8)3088.9(7)2926.9(6)4457.4(8)5103.6(7)3087.5(7)2799.1(8)5387.4(7)4747.4(6)7308.9(9)474.9(9)4265.3(8)9621.7(8)2406.2(9)4229.3(8)3788.7(8)2618.7(7)4306.4(6)1496.6(8)4105.1(8)2337.2(6)7744.0(8)1061.4(8)1897.8(6)

Table S9. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for Cd[B₂(SO₄)₄] at 173 K. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Table S10. Anisotropic displacement parameters (Å²×10³) for Cd[B₂(SO₄)₄] at 173 K. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka\times b\times U_{12}]$.

atom	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{23}	U_{13}	<i>U</i> ₁₂
Cd1	7.92(3)	6.34(3)	5.52(3)	0.19(2)	1.96(2)	0.51(2)
B 1	9.1(3)	6.5(2)	7.3(2)	0.1(2)	4.9(2)	0.0(2)
S 1	7.06(6)	8.05(6)	6.70(6)	-1.02(5)	4.03(5)	0.20(5)
S2	6.68(6)	5.28(6)	4.50(5)	0.59(4)	1.92(4)	0.19(4)
0111	10.9(2)	8.8(2)	10.8(2)	-2.9(2)	3.6(2)	2.8(2)
O121	8.9(2)	7.8(2)	9.5(2)	2.7(2)	5.4(2)	1.0(2)
O122	12.2(2)	8.2(2)	6.5(2)	0.5(2)	5.0(2)	3.1(2)
011	17.1(2)	15.3(3)	17.5(3)	6.4(2)	12.2(2)	2.2(2)
O12	8.8(2)	20.3(3)	19.3(3)	-5.2(2)	2.1(2)	-3.1(2)
O21	13.1(2)	5.2(2)	11.0(2)	2.4(2)	4.7(2)	1.7(2)
O22	10.4(2)	16.2(2)	7.0(2)	2.3(2)	-1.2(2)	-2.8(2)
O112	14.6(2)	12.7(2)	7.3(2)	-1.6(2)	5.2(2)	5.5(2)

Atom	Wyckoff symbol	x	у	Z	$m{U}_{ m eq}$
Cd1	2 <i>a</i>	0	0	0	0.00981(7)
S 1	4 <i>e</i>	0.18967(7)	0.41774(7)	0.14024(6)	0.00795(11)
S2	4 <i>e</i>	-0.29299(8)	0.17394(7)	0.15331(7)	0.01002(11)
011	4 <i>e</i>	0.1507(2)	-0.0900(3)	0.2337(2)	0.0170(4)
012	4 <i>e</i>	0.1211(2)	0.2612(2)	0.0700(2)	0.0134(3)
013	4 <i>e</i>	0.2190(2)	0.5381(2)	0.0247(2)	0.0118(3)
O14	4 <i>e</i>	0.0544(2)	0.5097(2)	0.1916(2)	0.0116(3)
O21	4 <i>e</i>	-0.4611(3)	0.2402(3)	0.0757(2)	0.0241(4)
O22	4 <i>e</i>	-0.2297(3)	0.0485(3)	0.0745(3)	0.0213(4)
O23	4 <i>e</i>	-0.2759(2)	0.1071(2)	0.3100(2)	0.0153(4)
O24	4 <i>e</i>	-0.1515(2)	0.3096(2)	0.2069(2)	0.0144(4)
B1	4e	-0.1375(4)	0.4715(3)	0.1417(3)	0.0101(5)

Table S11.	Wyckoff	symbol,	atomic	coordinates	<i>x</i> ; <i>y</i> ;	z and	equivalent	isotropic	displacement
parameters l	U_{eq} in Å ² for	or Cd[B ₂ ((SO ₄) ₄] a	at 250 K.					

Table S12. Anisotropic displacement parameters U_{ij} in Å ² for β -Cu[B ₂ (SO ₄) ₄] at 250 K.									
Atom	U 11	U_{22}	<i>U</i> ₃₃	U_{23}	U_{13}	U_{12}			
Cd1	0.01152(11)	0.00943(10)	0.00798(11)	-0.00031(9)	0.00269(8)	-0.00072(9)			
S 1	0.0096(2)	0.0078(2)	0.0064(3)	-0.00082(19)	0.0027(2)	-0.00035(18)			
S 2	0.0103(2)	0.0118(2)	0.0100(3)	0.0015(2)	0.0060(2)	-0.00038(19)			
011	0.0156(9)	0.0214(9)	0.0104(9)	0.0037(7)	-0.0004(7)	-0.0024(7)			
012	0.0175(8)	0.0077(7)	0.0157(9)	-0.0021(7)	0.0065(7)	-0.0018(6)			
013	0.0168(8)	0.0099(7)	0.0100(8)	-0.0011(6)	0.0064(7)	-0.0042(6)			
O14	0.0139(8)	0.0106(7)	0.0124(8)	-0.0038(7)	0.0073(7)	-0.0009(6)			
O21	0.0150(9)	0.0285(11)	0.0255(12)	0.0067(9)	0.0029(8)	0.0033(8)			
O22	0.0247(10)	0.0208(9)	0.0254(11)	-0.0083(8)	0.0178(9)	-0.0038(8)			
O23	0.0182(9)	0.0188(9)	0.0098(9)	0.0014(7)	0.0061(7)	-0.0084(7)			
O24	0.0161(8)	0.0126(8)	0.0142(9)	0.0049(7)	0.0049(7)	-0.0029(7)			
B1	0.0122(11)	0.0095(12)	0.0106(12)	0.0011(9)	0.0064(10)	-0.0004(8)			

Distance / angle	173 K (SC-XRD)	250 K (SC-XRD)	300 K (Rietveld)
Cd-O	222.77(6)-229.98(6)	222.9(2)-230.0(2)	222.7(6)-228.4(5)
\sum IR(Cd-O) ³	220	220	220
S-O	141.19(7)-153.19(6)	140.6(2)-152.8(2)	1.37(1)-154(1)
\sum IR(S-O) ³	147	147	147
B-O	144.5(2)-148.4(2)	144.3(3)-148.9(3)	141(1)-151(1)
$\sum IR(B-O)^3$	146	146	146
O-S-O	96.59(3)-116.46(4)	96.8(1)-116.4(1)	97.7(3)-117.2(3)
O-B-O	105.75(6)-114.45(6)	105.8(2)-114.7(2)	103.7(6)-114.1(9)

Table S13. Selected interatomic distances /pm and angles /deg in Cd[$B_2(SO_4)_4$] at 173 K, 250 K and 300 K determined by single crystal XRD and Rietveld refinement, respectively; the respective standard deviations are given in parentheses.

Figure S8. Extended asymmetric unit of Cd[B₂(SO₄)₄]. The thermal ellipsoids are set on 90% probability level. (Symmetry operators: $^{1}-x$, -y, -z; $^{2}-1/2-x$, 1/2+y, 1/2-z; $^{2}-x$, 1-y, z; $^{1}/2-x$, $^{1}/2+y$, $^{1}/2-z$)

Figure S9. Layers in $Cd[B_2(SO_4)_2]$ formed by corner and edge sharing supertetrahedra $B(SO_4)_4$ resulting in *sechser* rings with the cations located inside and corner sharing dimers of supertetrahedra; supertetrahedra light green, cadmium atoms grey, sulfur atoms yellow; oxygen atoms are omitted.

Figure S10. Comparison of both anionic networks just displaying the B (red) and S atoms (yellow) for better clarity viewed along the *vierer* rings; $Cd[B_2(SO_4)_2]$ (top) and $H_2[B_2(SO_4)_2]$ (bottom) show the same topology but very different conformations, thus preventing a simple and reasonable group-subgroup relationship according to a Bärnighausen scheme.

$H_2[B_2(SO_4)_4]$	$H_2O+B_2O_3+4\;SO_3$						
$MAPLE = 147036 \text{ kJ mol}^{-1}$	$MAPLE = 146662 \text{ kJ mol}^{-1}$						
$(\Delta = 0.25\%)$							
Cd[B ₂ (SO ₄) ₄]	$CdSO_4 + B_2O_3 + 3 SO_3$						
$MAPLE = 146705 \text{ kJ mol}^{-1}$	$MAPLE = 146270 \text{ kJ mol}^{-1}$						
(Δ Fehler! Textmarke nicht definiert. = 0.30%)							

Table S14. Electrostatic calculations $H_2[B_2(SO_4)_4]$ and $Cd[B_2(SO_4)_4]$.^[1-4]

Table S15. ECon derived by MAPLE-calculations for cadmium atoms in $Cd[B_2(SO_4)_4]$ using our data at 250 K

Atom	x	у	z	Distance / pm	Econ(1)	Econ(2)
Central atom						
Cd1	0	0	0			
Ligand						
O22	0.2297	-0.0485	-0.0745	222.932	1.059	1.059
O22	-0.2297	0.0485	0.0745	222.932	1.059	1.059
O11	-0.1507	0.09	-0.2337	223.352	1.047	1.048
O11	0.1507	-0.09	0.2337	223.352	1.047	1.048
012	-0.1211	-0.2612	-0.07	229.949	0.873	0.873
012	0.1211	0.2612	0.07	229.949	0.873	0.873
Next Ligand						
O24	0.1515	-0.3096	-0.2069	360.545	0	0

Atom	x	У	Z	Distance / pm	Econ(1)	Econ(2)
Central atom						
Cd1	1⁄2	0	1⁄2			
Ligand						
O4	0.2847	-0.0442	0.5791	213.878	1.069	1.07
O4	0.7153	0.0442	0.4209	213.878	1.069	1.07
O7	0.651	0.0985	0.7226	213.996	1.066	1.067
O7	0.349	-0.0985	0.2774	213.996	1.066	1.067
O6	0.6168	-0.2549	0.5732	222.767	0.826	0.827
06	0.3832	0.2549	0.4268	222.767	0.826	0.827
Next Ligand						
O1	0.654	0.3129	0.2956	360.2	0	0

Table S16. ECon derived by MAPLE-calculations for cadmium atoms in $Mn[B_2(SO_4)_4]$ using the data from [5].

Table 17. Comparison of CShM values of the coordination polyhedra surrounding B, S and M atoms in all currently know phyllosilicate analogous borosulfates with the general composition $M[B_2(SO_4)_4]$ with M = 2 H, Mn, Ni, Mg, Zn, Co, Cd and Ca.

M ^{x+}	2 H ⁺	Mn ²⁺	Ni ²⁺	$^{\alpha}Mg^{2+}$	$^{\beta}Mg^{2+}$	\mathbf{Zn}^{2+}	^α Co ²⁺	^β C0 ²⁺	$\mathbf{C}\mathbf{d}^{2+}$	Ca ²⁺
S 1	0.161	0.354	0.176	0.107	0.108	0.270	0.168	0.268	0.325	0.130
S 2	0.193	0.116	0.114	0.278	0.165	0.103	0.111	0.103	0.112	0.172
S 3	0.174	-	-	-	-	-	-	-	-	0.133
S 4	0.234	-	-	-	-	-	-	-	-	0.155
B1	0.099	0.168	0.065	0.107	0.060	0.416	0.063	0.419	0.162	0.173
B2	0.091	-	-	-	-	-	-	-	-	0.154
M^{2+}	-	0.091	0.176	0.094	0.100	0.205	0.158	0.226	0.141	1.839**

** All coordination spheres of the metal cations except Ca²⁺ may be described as idealized octahedra and their CShM deviation is given. For Ca²⁺ the deviation of an ideal trigonal dodecahedron is given.

Figure S11. Excerpt of a single layer of $H_2[B_2(SO_4)_2]$ viewed along the layer with the Hirshfeld-surface around one *zwölfer*-ring in the *d_{norm}*-mapping.

Figure S12. Excerpt of a single layer of $H_2[B_2(SO_4)_2]$ viewed perpendicular to the layer with the Hirshfeld-surface around one *zwölfer*-ring in the *d_{norm}*-mapping.

Figure S13. IR-spectrum of Cd[B₂(SO₄)₂].

Figure S14. UV-Vis spectrum of Cd[B₂(SO₄)₂].

Figure S15. PXRD pattern of $Cd[B_2(SO_4)_2]$ decomposed due to the presence of moisture compared to a calculated pattern for $CdSO_4 \cdot H_2O$.^[6]

References

- [1] A. Goto, T. Hondoh, S. Mae, J. Chem. Phys. 1990, 93, 1412–1417.
- [2] G. E. Gurr, P. W. Montgomery, C. D. Knutson, B. T. Gorres, Acta Crystallogr. B 1970, 26, 906-915.
- [3] R. Pascard, C. Pascard-Billy, Acta Crystallogr. 1965, 18, 830-834.
- [4] K. Aurivillius, C. Stålhandske, Z. Kristallogr. 1980, 153, 121-129.
- [5] L. C. Pasqualini, H. Huppertz, J. Bruns, *Inorganics* 2019, 7, 145-154.
- [6] C. Theppitak, K. Chainok, Acta Crystallogr. E 2015, 71, i8-i9.