Supporting Information

Modulation of the magnetic dynamics of pentagonal-bipyramidal

Co(II) complexes by fine-tuning of the coordination

microenvironment

Yuanyuan Qin,^{a‡} Yuewei Wu,^{a‡} Shuchang Luo,^{*b} Jing Xi,^a Yan Guo,^a Yi Ding,^a Jun Zhang^a and Xiangyu Liu^{*a}

- ^a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. E-mail: xiangyuliu432@126.com
- ^b College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China. E-mail: luosc@gues.edu.cn
- ‡ These authors contributed equally to this work.

*Corresponding author Dr. Xiangyu Liu E-mail: xiangyuliu432@126.com

*Corresponding author Prof. Shuchang Luo E-mail: luosc@gues.edu.cn

Contents:

Table S1. Selected crystallographic data and structure refinement for complexes 1-4.

 Table S2. Selected Bond Lengths (Å) and Bond Angles (°) for 1-4.

Table S3. Hydrogen-bonded parameters /Å, ° for complexes 1-3.

Table S4. Co (III) ions geometry analysis of 1-4 by SHAPE 2.1 software.

Table S5. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 Oe dc field of 1.

Table S6. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 Oe dc field of **2**.

Table S7. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 Oe dc field of 4.

 Table S8. The CASSCF/NEVPT2/def2-TZVP(-f) computed Individual contributions

 to D-tensor for complexes.

Table S9. Energy levels (cm⁻¹) of ligand field multiplets in zero field derived from

 CASSCF/def2-TZVP(-f) computed for complexes.

 Table S10.
 Structural and magnetic parameters for the reported pentagonalbipyramidal Co(II) complexes.

Fig. S1 1D chains formed via intermolecular hydrogen bonds and packing crystal structures of 1.

Fig. S2 1D chains formed via intermolecular hydrogen bonds along the b-axis(a) and packing crystal structures, 1D chains formed via intermolecular hydrogen bonds along the c-axis (b) of **2**.

Fig. S3 1D chains formed via intermolecular hydrogen bonds and packing crystal structures of 3.

Fig. S4 The packing crystal structures of 4.

Fig. S5 PXRD patterns for complexes **1**(a), **2**(b), **3**(c), **4**(d).

Fig. S6 Plots of M vs H/T for 1-4 at different temperatures.

Fig. S7 Temperature dependence of the in-phase (χ') and out-phase (χ'') ac magnetic susceptibility at 1000 Hz without static field for 1-4.

Fig. S8 Temperature dependence of the in-phase (top) and out-phase (bottom) ac susceptibilities at different frequencies with a dc field of 2000 Oe for complexes 1(a), 2(b) and 4(c).

Fig. S9 Frequency dependence of the in-phase ac susceptibility signals for complexes 1(a), 2(b) and 4(c) under a 2000 Oe dc field.

Fig. S10 Cole-Cole plots under 2000 Oe for **1**. The solid lines show the best fitting according to the generalized Debye model.

Fig. S11 Cole-Cole plots under 2000 Oe for **2**(a) and **4**(b). The solid lines show the best fitting according to the generalized Debye model.

Fig. S12 Calculated complete structure of complexes 1-4.

Fig. S13 The molecular structure for 1 (a) and 2 (b).

complex	1	2	3	4
Empirical formula	C ₂₄ H ₂₅ CoN ₅ O ₄	C ₂₅ H ₂₈ CoN ₈ O ₄	C ₁₃ H ₂₁ CoN ₇ O ₁₀	C ₁₇ H ₁₉ N ₆ O ₆ Co
Formula weight	506.42	563.48	494.30	462.31
Temperature	100.00(10) K	150.0 K	296.0 K	296.0 K
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/n$	C2/c	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> (Å)	9.9206(8)	25.621(3)	7.6670(19)	16.0546(12)
<i>b</i> (Å)	24.0797(17)	8.0234(12)	15.405(3)	8.0594(5)
<i>c</i> (Å)	10.0515(8)	24.820(3)	18.209(5)	15.2612(10)
α (°)	90	90	90	90
β (°)	109.445(9)	90.826(5)	96.489(9)	95.807(2)
γ (°)	90	90	90	90
$V(Å^3)$	2264.2(3)	5101.7(12)	2136.9(9)	1964.5(2)
Ζ	4	8	4	4
$D(g/cm^{3})$	1.486	1.467	1.536	1.610
Mu (mm ⁻¹)	0.800	0.722	0.868	0.922
F(0 0 0)	1052.0	2344.0	1020.0	952.0
Completeness	86.3	99.7	97.5	99.8
Unique reflections lections	5438	5878	4738	4502
Observed reflections	14627	66456	10263	30050
R _{int}	0.0536	0.0986	0.0603	0.0490
Final <i>R</i> indices [$I > 2\sigma(I)$	$R_1 = 0.0532$	$R_1 = 0.0503$	$R_1 = 0.0900$	$R_1 = 0.0417$
)]	$wR_2 = 0.0919$	$wR_2 = 0.1398$	$wR_2 = 0.2580$	$wR_2 = 0.1051$
Dindiana (all data)	$R_1 = 0.0850$	$R_1 = 0.0754$	$R_1 = 0.1113$	$R_1 = 0.0553$
r indices (all data)	$wR_2 = 0.1035$	$wR_2 = 0.1596$	$wR_2 = 0.2766$	$wR_2 = 0.1145$
Goodness-of-fit on F^2	1.039	1.049	1.057	1.042

 Table S1 Selected crystallographic data and structure refinement for complexes 1-4.

Complex 1			
Co(1)-O(1)	2.183(17)	O(3)-Co(1)-O(2)	91.32(8)
Co(1)-O(2)	2.148(18)	O(3)-Co(1)-O(4)	178.44(7)
Co(1)-O(3)	2.133(18)	O(3)-Co(1)-N(2)	92.66(8)
Co(1)-O(4)	2.146(17)	O(3)-Co(1)-N(3)	91.69(8)
Co(1)-N(2)	2.200(2)	O(3)-Co(1)-N(4)	86.50(7)
Co(1)-N(3)	2.175(2)	O(4)-Co(1)-O(1)	88.73(7)
Co(1)-N(4)	2.218(2)	O(4)-Co(1)-O(2)	88.99(7)
O(1)-Co(1)-N(2)	69.77(7)	O(4)-Co(1)-N(2)	86.28(7)
O(1)-Co(1)-N(4)	148.06(7)	O(4)-Co(1)-N(3)	89.05(7)
O(2)-Co(1)-O(1)	78.56(7)	O(4)-Co(1)-N(4)	95.04(7)
O(2)-Co(1)-N(2)	148.05(7)	N(2)-Co(1)-N(4)	142.06(8)
O(2)-Co(1)-N(3)	140.50(7)	N(3)-Co(1)-O(1)	140.81(8)
O(2)-Co(1)-N(4)	69.83(7)	N(3)-Co(1)-N(2)	71.04(8)
O(3)-Co(1)-O(1)	89.83(7)	N(3)-Co(1)-N(4)	71.07(8)
Complex 2			
Co(1)-O(1)	2.113(2)	O(2)-Co(1)-N(4)	69.73(8)
Co(1)-O(2)	2.168(2)	O(2)-Co(1)-N(6)	92.56(9)
Co(1)-O(3)	2.179(2)	O(3)-Co(1)-N(4)	91.39(8)
Co(1)-N(1)	2.161(2)	N(1)-Co(1)-O(2)	138.65(9)
Co(1)-N(2)	2.146(2)	N(1)-Co(1)-O(3)	85.93(9)
Co(1)-N(4)	2.233(2)	N(1)-Co(1)-N(4)	70.10(9)
Co(1)-N(6)	2.172(3)	N(1)-Co(1)-N(6)	94.11(9)
O(1)-Co(1)-O(2)	76.31(8)	N(2)-Co(1)-O(2)	147.11(9)
O(1)-Co(1)-O(3)	93.50(8)	N(2)-Co(1)-O(3)	86.11(9)
O(1)-Co(1)-N(1)	144.63(9)	N(2)-Co(1)-N(1)	72.17(9)
O(1)-Co(1)-N(2)	72.50(9)	N(2)-Co(1)-N(4)	142.28(9)
O(1)-Co(1)-N(4)	145.18(9)	N(2)-Co(1)-N(6)	96.43(9)
O(1)-Co(1)-N(6)	87.99(9)	N(6)-Co(1)-O(3)	177.36(9)
O(2)-Co(1)-O(3)	85.60(9)	N(6)-Co(1)-N(4)	86.14(9)

Table S2 Selected Bond Lengths (Å) and Bond Angles (°) for 1-4.

Complex 3			
Co(1)-O(1)	2.218(4)	O(9)-Co(1)-N(2)	89.95(18)
Co(1)-O(2)	2.147(4)	O(9)-Co(1)-N(4)	91.66(18)
Co(1)-O(9)	2.140(4)	O(10)-Co(1)-O(1)	89.9(2)
Co(1)-O(10)	2.129(5)	O(10)-Co(1)-O(2)	88.8(2)
Co(1)-N(1)	2.176(4)	O(10)-Co(1)-O(9)	177.3(2)
Co(1)-N(2)	2.202(5)	O(10)-Co(1)-N(1)	91.36(19)
Co(1)-N(4)	2.206(5)	O(10)-Co(1)-N(2)	88.7(2)
O(2)-Co(1)-O(1)	76.00(18)	O(10)-Co(1)-N(4)	90.8(2)
O(2)-Co(1)-N(1)	142.04(17)	N(1)-Co(1)-O(1)	141.95(16)
O(2)-Co(1)-N(2)	147.67(17)	N(1)-Co(1)-N(2)	70.25(16)
O(2)-Co(1)-N(4)	72.14(17)	N(1)-Co(1)-N(4)	69.91(16)
O(9)-Co(1)-O(1)	87.50(18)	N(2)-Co(1)-O(1)	71.76(16)
O(9)-Co(1)-O(2)	91.11(19)	N(2)-Co(1)-N(4)	140.13(17)
O(9)-Co(1)-N(1)	90.40(16)	N(4)-Co(1)-O(1)	148.11(16)

Complex 4			
Co(1)-N(2)	2.172(2)	O(1)-Co(1)-N(4)	70.41(7)
Co(1)-N(3)	2.175(2)	O(2)-Co(1)-N(4)	147.59(8)
Co(1)-N(4)	2.207(2)	O(2)-Co(1)-O(1)	77.2(7)
Co(1)-O(1)	2.2033(18)	O(3)-Co(1)-N(2)	100.25(8)
Co(1)-O(2)	2.1817(19)	O(3)-Co(1)-N(3)	89.55(8)
Co(1)-O(3)	2.1612(18)	O(3)-Co(1)-N(4)	83.00(8)
Co(1)-O(9)	2.101(2)	O(3)-Co(1)-O(1)	84.85(7)
N(2)-Co(1)-N(3)	70.61(8)	O(3)-Co(1)-O(2)	92.79(8)
N(2)-Co(1)-N(4)	140.66(8)	O(9)-Co(1)-N(2)	88.97(9)
N(2)-Co(1)-O(1)	148.72(8)	O(9)-Co(1)-N(3)	93.03(10)
N(2)-Co(1)-O(2)	71.74(8)	O(9)-Co(1)-N(4)	89.51(10)
N(3)-Co(1)-N(4)	70.23(8)	O(9)-Co(1)-O(1)	87.53(9)
N(3)-Co(1)-O(1)	140.62(8)	O(9)-Co(1)-O(2)	90.62(10)
N(3)-Co(1)-O(2)	142.08(8)	O(9)-Co(1)-O(3)	170.76(8)

Complex	D-H	А	D-H	H A	D-A	DHA
	O3 H3	3- N5 ¹	0.846	1.941	2.784	173.6
1	O4 H4A	4- O2 ²	0.860	2.020	2.747	142.4
	O ² H4B	4- 01 ²	0.860	1.890	2.694	154.6
	O3 H3	3- N8 ¹	0.881	1.928	2.785	164.0
2	N5- H5	5- N6 ²	0.880	2.110	2.928	154.7
	O4 H4A	1- 01	0.840	2.150	2.965	164.5
	09 H9)- O4	0.856	1.918	2.759	167.0
	O1 H10	0- O6	0.820	1.940	2.754	175.7
3	N3 H3	3- O31	0.860	1.960	2.817	170.7
	N5 H5	5- 07 ²	0.860	1.980	2.829	168.2

 Table S3 Hydrogen-bonded parameters /Å, ° for complexes 1-3.

Table S4 Co(II) ions geometry analysis of 1-4 by SHAPE 2.1 software.

Configuration	ABOXIY, 1	ABOXIY, 2	ABOXIY, 3	ABOXIY, 4	
PBPY-7	0.197	0.285	0.104	0.335	
COC-7	7.246	7.028	7.782	6.727	
CTPR-7	5.510	5.505	6.097	4.913	
JPBPY-7	3.465	4.008	3.287	3.447	
JETPY-7	22.459	22.424	23.901	22.644	

Table S5 Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 Oe dc field of 1.

<i>T</i> (K)	χт	χs	α	
2.4	0.204	0.191	0.168	
2.8	0.184	0.168	0.208	
3.2	0.167	0.151	0.100	
3.4	0.161	0.141	0.200	
3.8	0.148	0.131	0.095	

4.2	0.138	0.117	0.147	
4.4	0.114	0.133	1.889	
5	0.120	0.081	0.235	

Table S6 Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 Oe dc field of **2**.

<i>T</i> (K)	χ _T	χs	α	
2	0.312	0.192	0.111	
2.5	0.272	0.155	0.115	
3	0.239	0.131	0.096	
3.5	0.213	0.110	0.109	
4	0.191	0.097	0.091	
4.5	0.172	0.087	0.071	
5	0.157	0.073	0.082	
5.5	0.144	0.062	0.067	
6	0.133	0.037	0.088	
6.5	0.123	0.012	0.046	

Table S7 Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 Oe dc field of 4.

$T(\mathbf{K})$	$\chi_{ m T}$	χs	α	
2.5	0.246	6.84E-18	0.422	
3	0.218	1.06E-17	0.420	
3.5	0.197	1.42E-17	0.416	
4	0.178	1.95E-17	0.406	
4.5	0.160	2.84E-17	0.370	
5	0.146	4.44E-17	0.325	
5.5	0.132	4.68E-17	0.254	
6	0.121	8.36E-17	0.184	
6.5	0.111	6.79E-16	0.095	

Table S8 The CASSCF/NEVPT2/def2-TZVP(-f) computed Individual contributions to *D*-tensor for complexes.

		1				2			3					4			
2S+1	Root	D	Ε	2S+1	Root	D	Ε	2S+1	Root	D	Ε	2S+1	Root	D	E		
4	0	0.000	0.000	4	0	0.000	0.000	4	0	0.000	0.000	4	0	0.000	0.000		
4	1	9.283	8.961	4	1	8.704	9.008	4	1	10.434	10.001	4	1	9.051	7.914		
4	2	3.250	-2.630	4	2	2.798	-3.244	4	2	2.513	-1.887	4	2	1.808	-1.740		
4	3	7.312	5.772	4	3	10.809	-3.275	4	3	10.363	2.871	4	3	16.008	-13.810		
4	4	10.896	-10.257	4	4	9.202	0.582	4	4	12.198	-8.491	4	4	9.031	7.798		
4	5	0.005	-0.002	4	5	0.030	-0.012	4	5	0.001	-0.001	4	5	0.008	-0.000		

	4	6	0.003	-0.000	4	6	0.013	0.002	4	6	0.000	0.001	4	6	0.003	0.001
	4	7	0.028	0.008	4	7	0.054	-0.013	4	7	0.036	-0.033	4	7	0.032	-0.026
	4	8	0.040	-0.020	4	8	0.053	-0.002	4	8	0.041	0.034	4	8	0.050	0.041
	4	9	0.000	-0.000	4	9	0.000	-0.000	4	9	0.000	0.000	4	9	0.000	-0.000
_	2	0	0.088	-0.001	2	0	0.106	-0.000	2	0	1.082	0.001	2	0	0.856	0.004
	2	1	-0.000	0.007	2	1	3.431	-0.019	2	1	0.175	0.000	2	1	1.769	-0.007
	2	2	-0.002	-0.005	2	2	0.021	0.006	2	2	0.048	-0.002	2	2	-0.003	-0.001
	2	3	0.010	-0.000	2	3	-0.008	0.003	2	3	0.123	0.001	2	3	-0.006	0.000
	2	4	14.001	-0.003	2	4	-0.035	-0.062	2	4	12.374	0.000	2	4	0.015	-0.006
	2	5	-0.017	-0.011	2	5	-0.038	0.019	2	5	-0.005	-0.001	2	5	0.241	0.074
	2	6	0.006	0.013	2	6	1.229	-1.120	2	6	0.073	0.016	2	6	9.925	-0.091
	2	7	-1.536	-0.214	2	7	5.903	-0.287	2	7	-1.637	-1.541	2	7	-0.798	-1.212
	2	8	-1.525	0.106	2	8	-0.455	1.366	2	8	-1.540	1.435	2	8	-1.589	1.343
	2	9	-0.000	0.000	2	9	-0.003	0.002	2	9	-0.000	-0.000	2	9	-0.001	-0.001
	2	10	-0.043	0.021	2	10	-0.028	0.026	2	10	-0.045	0.038	2	10	-0.118	-0.092
	2	11	-0.005	-0.002	2	11	-0.019	-0.007	2	11	-0.066	-0.037	2	11	-0.008	0.001
	2	12	-0.040	0.041	2	12	-0.059	0.053	2	12	-0.046	-0.043	2	12	-0.042	0.040
	2	13	-0.069	-0.069	2	13	-0.118	-0.083	2	13	-0.047	-0.013	2	13	-0.069	-0.060
	2	14	-0.005	0.004	2	14	-0.146	0.111	2	14	-0.032	0.032	2	14	-0.083	0.069
	2	15	-0.003	-0.003	2	15	-0.112	-0.082	2	15	0.000	-0.000	2	15	-0.024	-0.021
	2	16	-0.499	0.498	2	16	0.009	-0.000	2	16	-0.466	0.463	2	16	-0.010	-0.006
	2	17	-0.445	-0.439	2	17	-0.210	0.112	2	17	-0.164	-0.141	2	17	-0.275	-0.300
	2	18	0.015	-0.002	2	18	-0.148	-0.078	2	18	-0.210	-0.212	2	18	-0.182	0.256
	2	19	-0.007	-0.005	2	19	-0.012	-0.015	2	19	-0.006	-0.006	2	19	0.061	0.045
	2	20	0.005	0.000	2	20	0.260	0.041	2	20	0.051	-0.000	2	20	-0.007	0.011
	2	21	0.001	-0.000	2	21	-0.057	-0.047	2	21	0.040	-0.001	2	21	0.002	0.002
	2	22	1.210	0.001	2	22	1.103	-0.005	2	22	1.459	-0.000	2	22	1.276	-0.000
	2	23	-0.003	-0.002	2	23	-0.028	0.021	2	23	-0.002	0.003	2	23	-0.005	0.005
	2	24	-0.130	-0.051	2	24	-0.153	-0.079	2	24	-0.015	-0.012	2	24	-0.257	0.186
	2	25	-0.059	0.025	2	25	-0.125	0.054	2	25	-0.017	0.017	2	25	-0.249	0.261
	2	26	-0.351	-0.252	2	26	-0.362	-0.264	2	26	-0.548	0.386	2	26	-0.040	-0.032
	2	27	-0.462	0.331	2	27	-0.433	0.335	2	27	-0.504	-0.335	2	27	-0.510	-0.435
	2	28	0.001	0.000	2	28	0.013	0.001	2	28	-0.000	-0.001	2	28	0.000	0.001
	2	29	0.006	-0.000	2	29	0.003	-0.000	2	29	-0.001	0.001	2	29	0.003	-0.002
	2	30	-0.004	0.004	2	30	-0.059	0.017	2	30	-0.001	0.002	2	30	-0.006	0.000
	2	31	-0.009	-0.003	2	31	-0.150	-0.141	2	31	-0.002	-0.001	2	31	-0.132	0.088

2	32	-0.124	-0.110	2	32	-0.115	0.115	2	32	-0.146	-0.125	2	32	-0.031	0.024
2	33	-0.120	0.107	2	33	-0.001	0.001	2	33	-0.140	0.112	2	33	-0.139	-0.118
2	34	-0.000	0.000	2	34	-0.004	0.001	2	34	-0.000	0.000	2	34	-0.000	-0.000
2	35	0.000	-0.000	2	35	-0.000	-0.001	2	35	0.001	-0.000	2	35	0.007	0.000
 2	36	0.001	0.000	2	36	-0.001	-0.001	2	36	0.001	-0.000	2	36	0.004	-0.000
2	37	-0.001	-0.000	2	37	0.003	-0.001	2	37	-0.002	-0.002	2	37	-0.002	-0.002
2	38	-0.001	0.000	2	38	0.006	0.002	2	38	-0.003	0.003	2	38	-0.002	0.003
2	39	0.211	0.000	2	39	0.199	0.000	2	39	0.221	0.000	2	39	0.209	0.000

Table S9 Energy levels (cm⁻¹) of ligand field multiplets in zero field derived fromCASSCF/def2-TZVP(-f) computed for complexes.

	1		2		3		4
States	Energy levels (cm ⁻¹)						
1	0.0	1	0.0	1	0.0	1	0.0
2	74.9	2	75.2	2	82.7	2	82.3
3	74.9	3	75.2	3	82.7	3	82.3
4	4510.3	4	3312.1	4	3825.2	4	3269.2
5	4510.3	5	3312.1	5	3825.2	5	3269.2
6	4921.5	6	3583.8	6	4205.9	6	3556.9
7	4921.5	7	3583.8	7	4205.9	7	3556.9
8	5378.7	8	4396.8	8	4576.3	8	4527.3
9	5378.7	9	4396.8	9	4576.3	9	4527.3
10	5481.7	10	4488.4	10	4654.1	10	4594.5
11	5481.7	11	4488.4	11	4654.1	11	4594.5
12	5889.2	12	6009.7	12	5440.4	12	4995.3
13	5889.2	13	6009.7	13	5440.4	13	4995.3
14	5965.9	14	6107.1	14	5539.2	14	5132.8
15	5965.9	15	6107.1	15	5539.2	15	5132.8
16	6298.9	16	6357.0	16	5616.9	16	6286.2
17	6298.9	17	6357.0	17	5616.9	17	6286.2
18	6624.4	18	6473.7	18	5801.3	18	6441.4
19	6624.4	19	6473.7	19	5801.3	19	6441.4
20	12649.9	20	11693.1	20	11080.4	20	10821.7
21	12649.9	21	11693.1	21	11080.4	21	10821.7

22	13023.2	22	11842.7	22	11315.7	22	11000.5
23	13023.2	23	11842.7	23	11315.7	23	11000.5
24	13471.1	24	14120.3	24	12479.4	24	12795.1
25	13471.1	25	14120.3	25	12479.4	25	12795.1
 26	13764.5	26	14193.4	26	12630.1	26	12889.4
27	13764.5	27	14193.4	27	12630.1	27	12889.4
28	17937.7	28	15789.9	28	16684.5	28	17185.9
29	17937.7	29	15789.9	29	16684.5	29	17185.9
30	18271.6	30	17135.2	30	16719.5	30	17457.7
31	18271.6	31	17135.2	31	16719.5	31	17457.7
32	18346.1	32	17840.9	32	17706.5	32	18392.2
33	18346.1	33	17840.9	33	17706.5	33	18392.2
34	18745.1	34	18423.3	34	18002.5	34	18723.7
35	18745.1	35	18423.3	35	18002.5	35	18723.7
36	20668.1	36	20849.0	36	18155.0	36	19881.5
37	20668.1	37	20849.0	37	18155.0	37	19881.5
38	20790.3	38	20939.3	38	18827.4	38	19954.1
39	20790.3	39	20939.3	39	18827.4	39	19954.1
40	20885.9	40	21187.2	40	20056.0	40	20984.6
41	20885.9	41	21187.2	41	20056.0	41	20984.6
42	21272.5	42	21412.7	42	20161.3	42	21171.5
43	21272.5	43	21412.7	43	20161.3	43	21171.5
44	21438.5	44	21498.8	44	20949.8	44	21313.3
45	21438.5	45	21498.8	45	20949.8	45	21313.3
46	22482.8	46	21769.3	46	21814.0	46	21597.5
47	22482.8	47	21769.3	47	21814.0	47	21597.5
48	22905.8	48	21909.2	48	22129.5	48	21769.8
49	22905.8	49	21909.2	49	22129.5	49	21769.8
50	22967.9	50	22113.7	50	22262.3	50	22059.1
51	22967.9	51	22113.7	51	22262.3	51	22059.1
52	23362.1	52	22444.4	52	22717.0	52	22580.0
53	23362.1	53	22444.4	53	22717.0	53	22580.0
54	23464.0	54	23179.8	54	23000.6	54	23137.6
55	23464.0	55	23179.8	55	23000.6	55	23137.6
56	25562.1	56	23780.4	56	24316.7	56	23891.0
57	25562.1	57	23780.4	57	24316.7	57	23891.0

58	25814.8	58	24028.3	58	24496.3	58	24136.9
59	25814.8	59	24028.3	59	24496.3	59	24136.9
60	26987.5	60	25317.0	60	26111.2	60	25343.2
61	26987.5	61	25317.0	61	26111.2	61	25343.2
 62	27099.1	62	25685.7	62	26433.4	62	26399.2
63	27099.1	63	25685.7	63	26433.4	63	26399.2
64	27336.6	64	27431.7	64	26778.3	64	26548.5
65	27336.6	65	27431.7	65	26778.3	65	26548.5
66	27738.2	66	27631.4	66	27140.4	66	27520.9
67	27738.2	67	27631.4	67	27140.4	67	27520.9
68	28592.2	68	28104.7	68	27672.8	68	27777.7
69	28592.2	69	28104.7	69	27672.8	69	27777.7
70	28652.8	70	28598.0	70	28050.7	70	28133.9
71	28652.8	71	28598.0	71	28050.7	71	28133.9
72	29107.9	72	29947.0	72	28379.3	72	28891.4
73	29107.9	73	29947.0	73	28379.3	73	28891.4
74	29465.6	74	30428.5	74	29336.8	74	29523.8
75	29465.6	75	30428.5	75	29336.8	75	29523.8
76	31243.0	76	30736.4	76	29573.4	76	29795.2
77	31243.0	77	30736.4	77	29573.4	77	29795.2
78	31578.9	78	31132.1	78	30671.4	78	30082.8
79	31578.9	79	31132.1	79	30671.4	79	30082.8
80	32177.3	80	31764.3	80	30926.6	80	30903.4
81	32177.3	81	31764.3	81	30926.6	81	30903.4
82	32335.8	82	31990.2	82	31276.1	82	31381.6
83	32335.8	83	31990.2	83	31276.1	83	31381.6
84	33040.8	84	32582.8	84	31679.7	84	31595.5
85	33040.8	85	32582.8	85	31679.7	85	31595.5
86	34103.7	86	33530.9	86	32702.2	86	32547.9
87	34103.7	87	33530.9	87	32702.2	87	32547.9
88	34334.3	88	33922.6	88	33080.8	88	32997.3
89	34334.3	89	33922.6	89	33080.8	89	32997.3
90	34633.9	90	34150.0	90	33177.9	90	33493.7
91	34633.9	91	34150.0	91	33177.9	91	33493.7
92	35137.1	92	34921.5	92	33865.4	92	33792.5
93	35137.1	93	34921.5	93	33865.4	93	33792.5

	94	36019.7	94	35699.0	94	34578.0	94	34953.6
	95	36019.7	95	35699.0	95	34578.0	95	34953.6
	96	42854.2	96	42585.1	96	42136.0	96	42217.8
	97	42854.2	97	42585.1	97	42136.0	97	42217.8
_	98	43153.8	98	42907.4	98	42434.8	98	42519.8
	99	43153.8	99	42907.4	99	42434.8	99	42519.8
	100	44407.6	100	43450.4	100	43377.7	100	43222.0
	101	44407.6	101	43450.4	101	43377.7	101	43222.0
	102	44785.0	102	43989.2	102	44011.4	102	43999.5
	103	44785.0	103	43989.2	103	44011.4	103	43999.5
	104	45511.5	104	44234.7	104	44379.2	104	44101.9
	105	45511.5	105	44234.7	105	44379.2	105	44101.9
	106	45658.2	106	44592.2	106	44486.2	106	44354.7
	107	45658.2	107	44592.2	107	44486.2	107	44354.7
	108	46189.2	108	44827.7	108	44968.8	108	44798.2
	109	46189.2	109	44827.7	109	44968.8	109	44798.2
	110	64302.9	110	63907.3	110	63115.4	110	63258.4
	111	64302.9	111	63907.3	111	63115.4	111	63258.4
	112	64432.0	112	64115.4	112	63396.8	112	63422.1
	113	64432.0	113	64115.4	113	63396.8	113	63422.1
	114	66176.0	114	64927.4	114	64922.3	114	64793.9
	115	66176.0	115	64927.4	115	64922.3	115	64793.9
	116	66524.9	116	65360.5	116	65291.3	116	65297.1
	117	66524.9	117	65360.5	117	65291.3	117	65297.1
	118	68286.7	118	66489.6	118	66776.0	118	66713.3
	119	68286.7	119	66489.6	119	66776.0	119	66713.3

Table S10 Structural and magnetic parameters for the reported pentagonalbipyramidal Co(II) complexes.

	Donors	Deviation ^a	Co-X _{axial} distance /Å	X _{axial} -Co-X _{axial} angle /°	Aver age Co-	Angu	The slow relaxation process			
Molecular formula					X _{eq} distance/ Å	lar distortion ^b / ^o	D exp. (cal.) /cm ⁻¹	τ ₀ /s	U _{eff} /K	
[Co(dapbh)(H ₂ O)(CH3OH)] (1) ^{this work}	N ₃ O ₄	0.197	2.133	178.44	2.1848	12.85	27.6(37.338)	4.24 × 10 ⁻⁴	22.16 (2000 Oe)	

			2.146							
[Co(dapbh)(N ₃)(CH ₃ OH)]·(CH	N ₄ O ₃	0.285	2.179	177.36	2.1642	9.15	21.9(37.273)	2.15 × 10 ⁻⁸	44.15 (2000 Oe)	
3011) (2)			2.172							
[Co(Haaapbb)(CHaOH)al·(NOa			2.129							
-_ (2)this work	N ₃ O ₄	0.104		177.30	2.1898	9.22	31.9(41.138)	_	_	
)2 (3)			2.140							
$[Co(H_2bapbh)(H_2O)(NO_3^-)]$			2.101							
)]·(NO ₃ ⁻) (4) ^{this work}	N_3O_4	4 0.335	2 161	170.76	2.1817	10.21	33.1(41.139)	1.03 × 10 ⁻⁸	48.72 (2000 Oe)	
			2.101							
		0.404	2.171		2.4624	0.070		5.2 × 10 ⁻⁹	85.2 (200 Oe)	
	N ₅ U ₂	0.101	2.173	. 178.1	2.1624	9.878	25.6(34.5)			
			2.150							
[Co(tdmmb)(CN) ₂]2H ₂ O (6) ¹	N_5C_2	0.109		179.3	2.1744	7.458	17.4(35.1)	7.4 × 10 ⁻¹⁰	76.4 (200 Oe)	
			2.140							
			2.123							
[Co(tdmmb)(NCS) ₂] (7) ¹	N ₇	0.195	2 1 2 2	175.5	2.1726	8.394	26.3(37.7)	8.2 × 10 ⁻⁸	82.2 (200 Oe)	
			2.125							
	NG	0.667	2.5199	476.5		0.456	245(20.7)	C.5. 10.8	00 C (200 O)	
[Co(tammb)(SPN) ₂] (8) *	N ₅ S ₂		2.5456	1/6.5	2.17404	8.456	34.5(39.7)	6.5 × 10 °	98.6 (200 Oe)	
	N ₃ O ₄		2.113	171.45		11.69	35.92(36.29)			
DMF) (9) ²		0.293			2.19656			6.5 × 10 ⁻⁶	25 (2000 Oe)	
			2.124							
[Co(2.152							
H ₄ L)(MeOH)(H ₂ O)](NO ₃) ₂ ·(M	N_3O_4	0.067	2 1 7 2	179.84	2.161	4.85	37.23(36.15)	3.5 × 10⁻6	15 (2000 Oe)	
eOH) (10) ²			2.175							
[Co(H ₄ L)(DEF)(H ₂ O)](NO ₃) ₂			2.090							
(11) ²	N_3O_4	0.253	2 133	174.4	2.1886	9.9	43.76(37.43)	1.9 × 10 ⁻⁶	4 (2000 Oe)	
			2.135							
[Co(H ₂ dapbh)(SCN) ₂].3H ₂ O		0.050	2.078	170.00	2 2244	10.00				
(12) ³	N ₅ O ₂	0.250	2.120	1/9.33	2.2214	10.68	15.9(14.6)		_	
$[Co(dapbh)(H_2O)_2]$ (13) ³	N₂O₄	0.342	2.096	175.18	2.213	14.81	13.1(12.4)	_	_	
	N ₃ U ₄		2.119	-						
			2 1 2 0							
[Co(H ₂ dapbh)(NO ₃)(H ₂ O)](N	N_3O_4	0.417	2.129	173.44	2.1944	12.96	32.4	6 × 10 ⁻¹⁰	81.2 (1000 Oe)	
O ₃) (14) ⁴		011/	2.140	1					51.2 (1000 00)	
			2.177							
$[CoL_{N5}^{1}(H_{2}O)_{2}]Cl_{2}\cdot 4H_{2}O$ (15) ⁴	N_5O_2	0.289		176.11	2.2373	7.24	24.6	1.2 × 10 ⁻⁶	29.8 (1000 Oe)	

			2.189						
[Co(dapbh)(im) ₂]·H ₂ O (16) ⁴	N ₅ O ₂	0.364	2.131	174.97	2.23676	19.1	24.8	8.7 × 10 ⁻¹¹	89.6 (1000 Oe)
[Co(L5 ^H)Cl ₂]·2CH₃OH(17) ⁵	N ₃ O ₂ Cl ₂	0.498	2.464	176.07	2.24542	7.46	38(44.8)	2.01 × 10 ⁻⁶	7.9(3000 Oe)
[Co(L5 ^H)Br ₂](18) ⁵	N ₃ O ₂ Br ₂	0.868	2.6441 2.6434	177.62	2.2354	8	41(44.0)	2.57 × 10 ⁻⁷	17.6(1000 Oe)
[Co(L5 ^H)l ₂](19) ⁵	N ₃ O ₂ I ₂	1.689	2.208 2.8155	176.74	2.2344	8.8	35(43.4)	1.06 × 10 ⁻⁷	30.6(2000 Oe)
Co(L ^{2,2'-} ^{bipy})(NO ₃) ₂ (CH ₃ CN)](20) ⁶	N ₃ O ₄	1.885	2.109	176.34	2.271	64.54	32.9(33.9)	7.73 × 10 ⁻⁹	55.1(1000 Oe)
[Co(O ₃ N)(H ₂ O) ₃](21) ⁷	NO ₆	0.490	2.0972	174.447	2.2447	31.34	70.41()	1.35 × 10 ⁻⁵	5.27(1500 Oe)
H ₂ dapbh = 2,6-diacetyl	pyridine bis(benzoyl hydra	zine); tdmmb	= 1,3,10,12-tetram	ethyl-1,2,11,1	2-tetraaza[[3]	(2,6)-pyridino[3]	(2,9)-1,10-phena	anthrolinophane-
2,10-diene; SPh ⁻ = thiopheno	2,10-diene; SPh ⁻ = thiophenol anion; H ₄ L = 2,2'-(pyridine-2,6-diylbis(ethan-1-yl-1-ylidene))bis(N-phenylhydrazinecarboxamide; L _{N5} ¹ = 2,13-dimethyl-3,6,9,12-tetraaza-								
1(2,6)-pyridinacyclotridecaphane-2,12-diene; im = imidazole; L5 ^H = 15-membered pyridine-based macrocyclic ligand (3,12,18-triaza-6,9-dioxabicyclo[12.3.1]octadeca-									
1(18),14,16-triene); L ^{CH2Py} = {3	1(18),14,16-triene); L ^{CH2Py} = {3,12-bis(2-methylpyridine)-3,12,18-triaza-6,9-dioxabicyclo[12.3.1]octadeca-1,14,16-triene; L ^{2-bzimi} = 3,12-bis((1H-benzimidazol-2-yl)methyl)-								
6,9-dioxa3,12,18-1	triazabicyclo	[12.3.1]octade	eca-1(18),14,1	6-triene; L ^{2,2'-bipy}	= 2,2'-bipyridii	ne; O ₃ N = 8-	carboxymethoxy	/-2-carboxylicqui	noline.

^a The extent of deviation is confirmed by the continuous shape measures (CShMs) calculated with SHAPE 2.1.

^bAngular distortion parameter = average distortion of the equatorial donor-metal-donor angles from the ideal 72°.

Fig. S1 1D chains formed via intermolecular hydrogen bonds and packing crystal structures of 1.

Fig. S2 1D chains formed via intermolecular hydrogen bonds along the b-axis(a) and packing crystal structures, 1D chains formed via intermolecular hydrogen bonds along the c-axis (b) of **2**.

Fig. S3 1D chains formed via intermolecular hydrogen bonds and packing crystal structures of 3.

Fig. S4 The packing crystal structures of 4.

Fig. S5 PXRD patterns for complexes 1(a), 2(b), 3(c), 4(d).

Fig. S6 Plots of M vs H/T for **1-4** at different temperatures.

Fig. S7 Temperature dependence of the in-phase (χ') and out-phase (χ'') ac magnetic susceptibility at 1000 Hz without static field for 1-4.

Fig. S8 Temperature dependence of the in-phase (top) and out-phase (bottom) ac susceptibilities at different frequencies with a dc field of 2000 Oe for complexes 1(a), 2(b) and 4(c).

Fig. S9 Frequency dependence of the in-phase ac susceptibility signals for complexes 1(a), 2(b) and 4(c) under a 2000 Oe dc field.

Fig. S10 Cole-Cole plots under 2000 Oe for **1**. The solid lines show the best fitting according to the generalized Debye model.

Fig. S11 Cole-Cole plots under 2000 Oe for **2**(a) and **4**(b). The solid lines show the best fitting according to the generalized Debye model.

Fig. S12 Calculated complete structure of complexes 1-4.

Fig. S13 The molecular structure for 1 (a) and 2 (b).

References

- D. Shao, S.-L. Zhang, L. Shi, Y.-Q. Zhang, and X.-Y. Wang, *Inorg. Chem.*, 2016 55, 10859-10869.
- 2. A. Mondal, A. K. Kharwar, and S. Konar, Inorg. Chem. 2019 58, 10686-10693.
- 3. M. Dey, S. Dutta, B. Sarma, R. C. Deka and N. Gogoi, M. Chem. Commun., 2016, 52, 753-756.
- 4. X.-C. Huang, C. Zhou, D. Shao, and X.-Y. Wang, *Inorg. Chem.*, 2014 53, 12671-12673.
- 5. B. Drahos [°], R. Herchel and Z, *Inorg. Chem.*, 2017, **56**, 5076–5088.
- 6. J. Wang, H.-H. Cui, Y.-Q. Zhang, L. Chen and X.-T. Chen, Polyhedron, 2018, 154, 148–155
- H. Lou, L. Yin, B. Zhang, Z.-W. Ouyang, B. Li and Z. Wang, *Inorg. Chem.*, 2018, 57, 7757– 7762.