Five 3D Co(II)-MOFs constructed from 5-(2-methylimidazol-1-yl) isophthalic acid and different bis(imidazole) ligands and one of their derivatives as an efficient electrocatalystfor ORR Ming-Xing Yang, Rong-Zhi Yan, Li-Juan Chen, and Shen Lin*

College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China

E-mail: shenlin@fjnu.edu.cn

Contents

1. Structure analyses and table of crystallographic data.
2. The coordination environments of $\mathbf{C o}(\mathrm{II})$ centres in compounds 3 and 4.
3. TGA and PXRD.
4. $\operatorname{PXRD}, \mathbf{N}_{2}$ adsorption and desorption isotherms and corresponding pore size distribution plots for CoNC-5.
5. Calculating the electron transfer number (n).
6. The equation about the measured potentials converted to the reversible hydrogen electrode (RHE).
7. IR spectra.

1. Structure analyses and table of crystallographic data.

The structure analysis was performed with direct methods and refined by full-matrix least-squares methods on F^{2} by using the SHELX-2018/3 program package. All nonhydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms of organic ligands were generated theoretically onto the specific atoms and refined isotropically. The hydrogen atoms of the coordinated water molecule and free water molecules and for compounds $\mathbf{1 , 3}$ and $\mathbf{4}$ were located in difference Fourier map and their positions were refined. The highly disordered solvent molecules of compound 5 are removed using the SQUEEZE routine of the PLATON. ${ }^{1}$ The final formulas of compound $\mathbf{5}$ were determined by crystal structure analysis combined with elemental analyses and TG.

1. A. L. Spek, Acta Crystallogr., Sect. C, 2015, 71, 9-18.

Table S1 Crystallographic data

Compound	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{CoN}_{2} \mathrm{O}_{5.50}$	$\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{Co}_{2} \mathrm{~N}_{8} \mathrm{O}_{8}$	$\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{Co}_{2} \mathrm{~N}_{8} \mathrm{O}_{10}$	$\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{Co}_{2} \mathrm{~N}_{8} \mathrm{O}_{9.5}$	$\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{Co}_{2} \mathrm{~N}_{8} \mathrm{O}_{12}$
Formula weight	330.16	816.51	928.63	871.58	962.65
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$	$\mathrm{P} 2_{1} / \mathrm{c}$	$\mathrm{P} 2_{1} / \mathrm{n}$	$\mathrm{P} 2_{1} / \mathrm{n}$	P-1
$a(\AA)$	$9.9453(10)$	$10.064(2)$	$10.167(4)$	$10.1326(2)$	$10.1563(4)$
$b(\AA)$	$18.0179(18)$	$14.736(3)$	$13.936(4)$	$12.8716(3)$	$13.5437(8)$
$c(\AA)$	$7.1046(14)$	$15.222(3)$	$15.062(5)$	$14.3190(4)$	$15.3945(6)$
$\alpha\left({ }^{\circ}\right)$	90	90	90	90	$88.728(4)$
$\beta\left({ }^{\circ}\right)$	$104.339(14)$	$129.134(10)$	$109.315(5)$	$91.030(2)$	$82.586(3)$
$\gamma\left({ }^{\circ}\right)$	90	90	90	90	$87.645(4)$
$V\left(\AA^{3}\right)$	$1233.4(3)$	$1751.1(6)$	$2014.0(12)$	$1867.22(8)$	$2097.79(17)$
Z	4	2	2	2	2
$\mathrm{~F}(000)$	672	832	952	894	988
$\left.D_{\text {calcd }}(\mathrm{g} \cdot \mathrm{cm})^{-3}\right)$	1.778	1.549	1.531	1.550	1.524
$\left.\mu(\mathrm{~mm})^{-1}\right)$	1.418	1.013	0.894	7.552	0.865
$\theta_{\text {max }}, \theta_{\text {min }}\left({ }^{\circ}\right)$	$25.997,3.168$	$27.487,2.953$	$27.554 / 3.218$	$74.960,4.620$	26.99203 .9130
$R_{\text {int }}$	0.0377	0.0229	0.0307	0.0360	0.0398
No. of data				9660	18432
collected	5510	13596	13927		
No. of unique data	2424	3975	4542	3749	8322
No. of observed	1794	3555	3929	3263	5573
No. variables	207	245	324	269	550

Final R indicaes	$R_{1}=0.0492$	$R_{1}=0.0334$	$\mathrm{R}_{1}=0.0396$,	$R_{1}=0.0376$	$R_{1}=0.0466$		
$[\mathrm{I}>2 \sigma(\mathrm{I})]$	$w R_{2}=0.1063$	$w R_{2}=0.1009$	$w \mathrm{R}_{2}=0.0928$	$w R_{2}=0.0933$	$w R_{2}=0.0993$		
R indices(all data)	$R_{1}=0.0734$	$R_{1}=0.0380$	$R_{1}=0.0492$,	$R_{1}=0.0458$	$R_{1}=0.0800$		
Goof	$w R_{2}=0.1197$	$w R_{2}=0.1046$	$w \mathrm{R}_{2}=0.0986$	$w R_{2}=0.0984$	$w R_{2}=0.1150$		
(Δ / σ) max,mean	1.024	1.016	1.072	1.028	1.004		
$\Delta \rho_{\max } / \Delta \rho_{\min }$	$0.002,0.000$	$-0.001,0.000$	$0.0002,0.0000$	$0.0000,0.0000$	$0.001,0.0000$		
$\left(\mathrm{e} / \AA^{3}\right)$	$0.654 /-0.748$	$0.618 /-0.420$	$0.248 /-0.243$	$0.419 /-0.426$	$0.400 /-0.322$		
	${ }^{\mathrm{a}} R_{1}=\sum\left\\|F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}} \\| / \sum\right\| F_{\mathrm{o}}\right\|, w \mathrm{R}=\left\{\sum\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] /\left[\sum w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}\right.$						

Table $\mathbf{S} 2$ Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of compound 1

Symmetry code: \#1, $x+1, y, z ; \# 2,-x+1, y-1 / 2,-z+3 / 2 ; \# 3, x+1,-y+1 / 2, z+1 / 2$.

Table S3 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of compound 2

Co1-O4\#1	$1.9797(13)$	Col-O2	$1.9953(14)$	Co1-N4
Co1-N2\#2	$2.0302(16)$			
O4\#1-Co1-O2	$95.08(6)$	O4\#1-Co1-N4	$116.59(7)$	
O2-Co1-N4	$114.90(6)$	O4\#1-Co1-N2\#2	$107.03(7)$	
O2-Co1-N2\#2	$117.70(6)$	N4-Co1-N2\#2	$105.56(6)$	

Symmetry code: \#1, $x+1, \mathrm{y}, \mathrm{z} ; \# 2,-x, y+1 / 2,-z+1 / 2$.
Table S4 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of compound 3

Co1-O4	$1.9856(16)$	Col-O1\#1	$2.0085(15)$	Co1-N4	$2.0121(19)$
Co1-N2\#2	$2.0456(19)$				
O4-Co1-O1\#1	$99.17(7)$	O4-Co1-N4	$106.16(7)$		
O1\#1-Co1-N4	$120.98(7)$	O4-Co1-N2\#2	$108.19(7)$		
O1\#1-Co1-N2\#2	$112.32(7)$	N4-Co1-N2\#2	$108.77(7)$		

Symmetry code: \#1, $x-1, y, z ; \# 2,-x+3 / 2, y-1 / 2,-z+3 / 2$.

Table S5 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of compound 4

Co1-O1	$1.9849(15)$	Col-O4\#1	$2.0211(16)$	Co1-N2\#2	$2.041(2)$
Co1-N3	$2.017(2)$				
O1-Co1-N3	$106.00(7)$	O1-Co1-O4\#1	$98.25(7)$		
N3-Co1-O4\#1	$122.02(7)$	O1-Co1-N2\#2	$110.34(7)$		
N3-Co1-N2\#2	$108.31(8)$	O4\#1-Co1-N2\#2	$111.05(8)$		

Symmetry code: \#1, $x-1, y, z ; \# 2, x-1 / 2,-y+3 / 2, z+1 / 2$.

Table S6 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of compound 5

Co1-O8	$1.993(2)$	Col-O5\#1	$2.0088(19)$	Co1-N8\#2	$2.030(3)$
Co1-N2\#3	$2.037(3)$	Co2-O1\#1	$1.986(2)$	Co2-O4	$2.002(2)$
Co2-N5	$2.008(3)$	Co2-N3	$2.027(3)$		
O8-Co1-O5\#1	$97.73(9)$	O8-Co1-N8\#2	$103.72(10)$		
O5\#1-Co1-N8\#2	$111.25(9)$	O8-Co1-N2\#3	$111.65(11)$		
O5\#1-Co1-N2\#3	$109.58(10)$	N8\#2-Co1-N2\#3	$120.42(12)$		
O1\#1-Co2-O4	$97.45(8)$	O1\#1-Co2-N5	$114.19(9)$		
O4-Co2-N5	$111.52(10)$	O1\#1-Co2-N3	$114.94(10)$		
O4-Co2-N3	$108.31(10)$	N5-Co2-N3	$109.74(11)$		

Symmetry code: \#1, $x+1, y, z ; \# 2,-x+2,-y+3,-z+1 ; \# 3,-x+2,-y+4,-z+2$.

2. The coordination environments of $\mathbf{C o}$ (II) centres in compounds 3

and 4

(a)

(b)

Fig. S1 The ORTEP drawing of the coordination environments of $\mathrm{Co}(\mathrm{II})$ centres in compounds 3 (a) and 4 (b) (50% probability level). Symmetry codes in compound 3: \#1, $x-1, y, z ; \# 2,-x+3 / 2, y$ $1 / 2,-z+3 / 2 ; \# 3,-x+1,-y+1,-z ; \# 4 x+1, y, z ; \# 5,-x+3 / 2, y+1 / 2,-z+3 / 2$; symmetry codes in compound 4: \#1, $x-1, y, z ; \# 2, x-1 / 2,-y+3 / 2, z+1 / 2 ; \# 3,-x+1,-y,-z ; \# 4, x+1, y, z ; \# 5, x+1 / 2,-y+3 / 2, z-1 / 2$.

3. PXRD and TGA of compounds $\mathbf{1 - 5}$

Fig. S2 Powder X-ray diffraction (PXRD) patterns for compound 1.

Fig. S3 Powder X-ray diffraction (PXRD) patterns for compound 2.

Fig. S4 Powder X-ray diffraction (PXRD) patterns for compound 3.

Fig. S5 Powder X-ray diffraction (PXRD) patterns for compound 4.

Fig. S6 Powder X-ray diffraction (PXRD) patterns for compound 5.

Fig. S7 The TG curves of compounds $\mathbf{1 - 5}$ under N_{2} atmosphere at a heating rate of $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$.

4. $\operatorname{PXRD}, \mathbf{N}_{2}$ adsorption and desorption isotherms and corresponding

 pore size distribution plots for CoNC-5.

Fig. S8 Powder X-ray diffraction (PXRD) patterns for CoNC-5.

Fig. S9 (a) N_{2} adsorption and desorption isotherms for CoNC-5. (b) Corresponding pore size distribution plots.

5. Calculating the electron transfer number (n).

The electron transfer numbers (n) were calculated by the Koutecky-Levich equation:

$$
\frac{1}{J}=\frac{1}{J_{L}}+\frac{1}{J_{K}}=\frac{1}{B \omega^{\frac{1}{2}}}+\frac{1}{J_{K}}
$$

$B=0.62 \mathrm{n} F C_{0} D_{0}^{\frac{2}{3}} V^{-\frac{1}{6}}$

Where J is the measured current density, J_{K} and J_{L} are the kinetic and limiting current densities, ω is the angular velocity of the disk, n is the overall number of electrons transferred in oxygen reduction, F is the Faraday constant $\left(96485 \mathrm{C} \cdot \mathrm{mol}^{-1}\right), \mathrm{C}_{0}$ is the bulk concentration of $\mathrm{O}_{2}(1.2$ $\left.\times 10^{-6} \mathrm{~mol} \cdot \mathrm{~cm}^{-3}\right), \mathrm{D}_{0}$ is the diffusion coefficient of O_{2} in $0.1 \mathrm{M} \mathrm{KOH}\left(1.9 \times 10^{-5} \mathrm{~cm}^{2} \cdot \mathrm{~s}^{-1}\right)$, and V is the kinematic viscosity of the electrolyte $\left(0.01 \mathrm{~cm}^{2} \cdot \mathrm{~s}^{-1}\right)$, and k is the electron transfer rate constant.

The electron transfer number (n) were calculated by the results of the rotating ring-disk electrode (RRDE) test with the following equations:

$$
n=4 \times \frac{I_{D}}{I_{D}+\frac{I_{R}}{N}}
$$

Fig. S10 (a) The K-L plots at the potentials of 0.10 to 0.50 V . (b) LSV curves ($5 \mathrm{mV} / \mathrm{s}$) of CoNC-5 before and after 2000 potential cycles in O_{2}-saturated 0.1 M KOH solution at a RRDE rotation rate of 1600 rpm .

6. The equation about the measured potentials converted to the reversible hydrogen electrode (RHE):

All the potentials in this work were converted into reference potential of reversible hydrogen electrode (RHE) by the conversion formula as follows:

$$
\mathrm{RHE}=E_{\mathrm{Ag} / \mathrm{AgCl}}+0.059 p H+0.2224 \mathrm{~V}-0.059 \lg a\left(\mathrm{Cl}^{-}\right)
$$

Where $E_{\mathrm{Ag} / \mathrm{AgCl}}$ represents potential which is measured by silver chloride electrode as reference electrode. 0.2224 V is the standard electrode potential of silver chloride electrode at $25^{\circ} \mathrm{C}$. The $a\left(\mathrm{Cl}^{-}\right)$is the concentration of Cl^{-}in saturated silver chloride electrode (3.4M).

7. IR spectra of compounds $\mathbf{1 - 5}$

Fig.S11 IR spectrum of $\mathbf{1}$.

Fig.S12 IR spectrum of 2

Fig.S13 IR spectrum of $\mathbf{3}$

Fig.S14 IR spectrum of 4

Fig.S15 IR spectrum of $\mathbf{5}$

