Revealing the electrochemical performance of manganese phosphite/RGO hybrid in acidic media

Abhisek Padhy ^{ab}, Rahul Kumar ^{ab}, J. N. Behera *^{ab}

^{*a*} National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Jatni, Khordha 752050, Odisha, India. E-mail: <u>jnbehera@niser.ac.in</u>

^b Centre for Interdisciplinary Sciences (CIS), NISER, Jatni 752050, Odisha, India

Fig. S1 XPS survey spectra of Mn-HPO/RGO hybrid.

Element	Weight %
Mn	23.6
Р	8.9
0	45.5
С	22

Fig. S2 EDX spectra of the Mn-HPO/RGO hybrid with atomic percentage of elements.

Fig. S3 SEM images of Mn-HPO/RGO synthesized with 5 mg and 20 mg GO

Fig. S4 Charge-discharge curve for 1st and 5000th cycle along with the morphology of the active material before and after cyclic stability

Fig. S5 CV curves at 5 mV/s and GCD curves at 1 A/g for Mn-HPO/RGO-5, Mn-HPO/RGO-10 and Mn-HPO/RGO-20.

Fig. S6 EIS spectra of (a) Mn-HPO and (b) Mn-HPO/RGO-10 with fitted data.

Fig. S7 CV and GCD curves MXene (Ti₃C₂).

Fig. S8 Raman spectra of the fresh electroactive material and the electroactive material after stability

Table S1 Comparison of supercapacitor performance of Mn-HPO/RGO with previous reports

Name of the	Specific	Electrolyte	Rate	Specific	Energy	Cyclic	References
Material	Capacitance		performance	Capacitanc	Density	Stability	
	(F/g)		(in %)	e of the	of the		
				device	Device		
				(F/g)	(Wh/kg)		
$MnO_x@C@$	350	6 M KOH	34.8 %	53.4	23	94 % up	1
MnO_x						to 2000	
						cycles	
о <i>v</i> -	452.4	1 M Na ₂ SO ₄	69.9 %	90.8	40.2	92.2 %	2
MnO ₂ @Mn						up to	
O2						10000	
						cycles	
Ti ₃ C ₂ T _x	-	1 M Na ₂ SO ₄	-	23.3	8.3	-	3
(MXene)–δ							
-MnO ₂ ASC							

Mn ₃ (PO ₄) ₂ /GF	270	6 M KOH	-	28	7.6	96 % up to 10000	4
						cycles	
Mn ₃ (PO ₄) ₂	203	1 M Na ₂ SO ₄	88 %	46.8	16.64	90 % up	5
						to 10000	
						cycles	
Mn3(PO4)2	194	2 M KOH	85 %	41.9	14.89	90 % up	5
						to 10000	
						cycles	
NH4MnPO4	423	3 M KOH	65 %	65.4	29.4	93 % up	6
\cdot H ₂ O						to 100k	
						cycles	
Amorphous	912.4	1 M Na ₂ SO ₄	66.6 %	205.59	126	95 % up	7
Manganese		+ PBS				to 5000	
phosphate						cycles	
Mn-	770	1 M H ₂ SO ₄	67 %	108	34	94 % up	This work
HPO/RGO						to 12000	
hybrid						cycles	

References.

- 1 Z. Ma, F. Jing, Y. Fan, L. Hou, L. Su, L. Fan and G. Shao, *Small*, 2019, **15**, 1900862.
- 2 Y. Fu, X. Gao, D. Zha, J. Zhu, X. Ouyang and X. Wang, *J. Mater. Chem. A*, 2018, **6**, 1601–1611.
- 3 C. K. Kamaja, S. Mitra, Gaganjot and M. Katiyar, *Energy & Fuels*, 2022, **36**, 703–709.
- 4 A. A. Mirghni, M. J. Madito, T. M. Masikhwa, K. O. Oyedotun, A. Bello and N. Manyala, *J. Colloid Interface Sci.*, 2017, **494**, 325–337.
- 5 X.-J. Ma, W.-B. Zhang, L.-B. Kong, Y.-C. Luo and L. Kang, *RSC Adv.*, 2016, **6**, 40077–40085.
- 6 K. Raju, H. Han, D. B. Velusamy, Q. Jiang, H. Yang, F. P. Nkosi, N. Palaniyandy, K. Makgopa, Z. Bo and K. I. Ozoemena, *ACS Energy Lett.*, 2020, **5**, 23–30.
- 7 D. Yang, Y. Song, M. Zhang, Z. Qin, R. Dong, C. Li and X. Liu, *Adv. Funct. Mater.*, 2021, **31**, 2100477.