Ni₃Fe/BC nanocatalyst based on biomass charcoal self-reduction achieves excellent hydrogen storage performance of MgH₂

Quanhui Hou^{a,b}, Jiaqi Zhang^b, Zhuan Zheng^a, Xinglin Yang^{b*}, Zhao Ding^{c*}

a. School of Automotive Engineering, Yancheng Institute of Technology, Yancheng, 224051, China

b. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212003, China

c. College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China

* Corresponding author. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212003, China

E-mail addresses: yangxl233@163.com (X.L. Yang).

* Corresponding author. College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China

E-mail addresses: zhaoding@cqu.edu.cn (Z Ding).

Supplementary Figures

Fig. S1. DSC curves of MgH₂ and MgH₂+10 wt.% Ni₃Fe/BC at different heating rates

Fig. S2. JMAK plots of MgH₂

Fig. S3. SEM images of MgH_2+10 wt.% Ni₃Fe/BC after ball milling (a) and MgH_2+10 wt.% Ni₃Fe/BC after 20 cycles (b).

Fig. S4. Comparison of hydrogen release performance of MgH_2+10 wt% Ni₃Fe/BC at different cycling stages (a), comparison of hydrogen absorption performance of MgH_2+10 wt% Ni₃Fe/BC at different cycling stages (b).

Sample	initial dehydrogenation temperature ($^{\circ}C$)	Refs.
MgH ₂ +5 wt.%FeNi/rGO	230	36
MgH ₂ + 5 wt.% Ni ₃ Fe/rGO	185	35
MgH ₂ +9 wt.% NiO/C	195	19
MgH ₂ -Ni/Al ₂ O ₃	190	46
MgH ₂ -70TiO ₂ @rGO	240	47
MgH_2 -5 wt.% $K_2Ti_8O_{17}$	189	48
MgH ₂ +10 wt.% Ni ₃ Fe/BC	184.5	This work

Table S1 Effect of different catalyst doping on initial dehydrogenation temperature of MgH₂