Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting information

for

Oxidative Addition or Werner Coordination Complex? Reactivity of βdiketiminate Supported Main Group and First-row Transition Metal Complexes towards Ammonia

by

Petra Vasko*^a and Cheuk W. Lau^a

^aDepartment of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Helsinki, Finland. E-mail: petra.vasko@helsinki.fi

		QAMXOR (M = Al)	XEDHOD (M = Ga)	BICXAN (M = In)	CEPHAH (M = Si)	GEMDAE (M = Ge)	XUGQOG (M = Si)	HOVGOP (M = Ge)
M-N BOND LENGTH (Å)	Experimental	1.9931	2.0793	2.3077	1.735	1.865	1.727	2.0297
		1.9882	2.0793	2.3072	1.734	1.866	1.724	2.0296
							1.653	1.8448
	Calculated	1.9576	2.0528	2.2756	1.736	1.852	1.737	2.0297
		1.9570	2.0560	2.2682	1.750	1.869	1.728	2.0296
							1.699	1.8449
N-M-N ANGLE (°)	Experimental	88.5	86.6	80.7	99.3	95.8	103.1	88.6
	Calculated	89.9	87.5	81.1	98.6	95.8	103.1	88.6
M-N-C-C ANGLE (°)	Experimental	-5.3	0.0	-2.3	-0.8	2.4	7.8	-95.4
		3.8	-0.0	2.3	-1.2	0.1	-11.0	
	Calculated	1.9	2.1	2.3	0.0	0.0	-3.9	-95.4
		1.53695	1.7	0.9	0.0	0.0	-5.5	
REFERENCE		1	2	3	4	5	6	7

Table S1. Comparison of selected bond parameters of reported nacnacM compounds.

Figure S1. Optimised structure of NacNacB·NH₃ (left) and NacNacC·NH₃ (right).

Table S2. Comparison of group 14 NacnacM relative stabilities of 1,1- and 1,4-oxidative addition reaction products. The differences to free starting materials NacnacM and NH₃ are given in Gibbs free energies (kJ/mol).

Compound	1,1-oxidative addition (kJ/mol)	1,4-oxidative addition (kJ/mol)
NacnacC	-67.3	42.5
NacnacSi	-126.6	-48.1
NacnacGe	10.1	-46.8
NacnacSn	95.5	-70.1
NacnacPb	242.2	-66.2

Table S3. EDA-NOCV derived most important deformation densities for the interaction between NacnacM and NH_3 fragments in NacnacM·NH₃ complexes.

Compound	Orbital interaction (kJ/mol)	Percentage of all orbital interactions (%)
NacnacFe	-50.1	38
NacnacCo	-55.8	46
NacnacNi	-94.0	62
NacnacCu	-64.1	58
NacnacAl	-98.1	72
NacnacGa	-47.6	71
NacnacIn	-41.1	68
NacnacSi	-180.9	77
NacnacGe	-134.8	77
NacnacSn	-99.2	74
NacnacPb	-78.1	72

Figure S2. The most important EDA-NOCV deformation density of NacnacCu·NH₃ (left) and NacnacPb·NH₃ (right). Isovalue set at ± 0.002 a.u. and red contour corresponds to the depletion of electron density and blue contour the accumulation of electron density.

References

- 1. C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao and F. Cimpoesu, *Angew. Chem. Int. Ed.*, 2000, **39**, 4274–4276.
- 2. N. J. Hardman, B. E. Eichler and P. P. Power, *Chem. Commun.*, 2000, 1991–1992.
- 3. M. S. Hill and P. B. Hitchcock, *Chem. Commun.*, 2004, 1818–1819.
- 4. M. Driess, S. Yao, M. Brym, C. van Wüllen and D. Lentz, *J. Am. Chem. Soc.*, 2006, **128**, 9628–9629.
- 5. M. Driess, S. Yao, M. Brym and C. van Wüllen, *Angew. Chem. Int. Ed.*, 2006, **45**, 4349–4352.
- 6. A. Jana, C. Schulzke and H. W. Roesky, J. Am. Chem. Soc., 2009, **131**, 4600–4601.
- 7. A. Jana, I. Objartel, H. W. Roesky and D. Stalke, *Inorg. Chem.*, 2009, **48**, 798–800.