## Solution-phase controlled synthesis of Cu<sub>3</sub>NbSe<sub>4</sub> nanocrystals for optoelectronic applications

Yutong Zhao,<sup>ab</sup> Mengxue Liu,<sup>a</sup> Wenqian Zhang,<sup>ab</sup> Xue Sun,<sup>ab</sup> Wenliang Wang,<sup>\*ab</sup> Wenxiu Zhang,<sup>a</sup> Mengqi Tang,<sup>a</sup> Wenqing Ren,<sup>a</sup> Mingyu Sun,<sup>a</sup> Wenling Feng,<sup>\*ab</sup> and Weihua Wang<sup>ab</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Qufu Normal University,

Qufu 273165, Shandong, P. R. China

<sup>b</sup>The Key Laboratory of Life-Organic Analysis, Qufu Normal University,

Qufu 273165, Shandong, P. R. China

\*E-mail: wlwang@qfnu.edu.cn; wlfeng21@163.com



Fig. S1 Raman spectrum of the as-synthesized Cu<sub>3</sub>NbSe<sub>4</sub> nanocrystals.



Fig. S2 XPS survey spectrum of the as-synthesized  $Cu_3NbSe_4$  nanocrystals.

In this work, The XPS peak fitting is performed by XPSPEAK software using a Gaussian-Lorentzian peak shape and a Shirley background.



Fig. S3 EDX spectrum of the as-synthesized Cu<sub>3</sub>NbSe<sub>4</sub> nanocrystals.



Fig. S4 XRD patterns of the resulting products at 280 °C for 30 min with the increasing of the concentration of OA: (a) in OAm (7.6 mL) with OA (0.4 mL), (b) in OAm (7.2 mL) with OA (0.8 mL), and (c) in OAm (6.8 mL) with OA (1.2 mL).

| Materials                              | Wavelength (nm)    | External bias (V) | Response time (s | ) ref.    |
|----------------------------------------|--------------------|-------------------|------------------|-----------|
| CdTe                                   | 400                | 10                | 0.7/1            | [1]       |
| Sb <sub>2</sub> SeTe <sub>2</sub>      | 532                | 0.1               | 10               | [2]       |
| $SnS_2$                                | 650                | 5                 | 20/31            | [3]       |
| $MoS_2$                                | 561                | 8                 | 4/9              | [4]       |
| V <sub>0.75</sub> W <sub>0.25</sub> Se | e <sub>2</sub> 670 | 0.3               | 1.8/2.9          | [5]       |
| CuInSe <sub>2</sub>                    | 700                | 0.5               | 10.5/8.4         | [6]       |
| Cu <sub>3</sub> NbSe <sub>4</sub>      | 400-780            | 1.0               | 0.3/0.1          | this work |

Table S1. Comparison of the performances of visible light photodetectors.



Fig. S5 (a) I-V curves of initial Cu<sub>3</sub>NbSe<sub>4</sub> photodetector and the device after white light irradiating 3 hours measured in the light. (b) Temporal photoresponse of the device after white light irradiating 3 hours.

## References

- 1 M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan and J.-S. Lee, *Phys. Chem. Chem. Phys.*, 2014, **16**, 22687-22693.
- 2 S.-M. Huang, S.-J. Huang, Y.-J. Yan, S.-H. Yu, M. Chou, H.-W. Yang, Y.-S. Chang and R.-S. Chen, *Sci. Rep.*, 2017, 7, 45413.
- 3 Y. Tao, X. Wu, W. Wang and J. Wang, J. Mater. Chem. C, 2015, 3, 1347-1353.
- 4 O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, *Nat. Nanotechnol.*, 2013, **8**, 497-501.
- 5 P. Pataniya, G. Solanki, K. Patel, V. Pathak and C. Sumesh, *Mater. Res. Express*, 2017, 4, 106306.
- 6 H. Liu, M. Yu, F. Qin, W. Feng and P. Hu, ACS Appl. Nano Mater., 2018, 1, 5414-5418.