Supporting Information

Crystal Structure, Assembly Process, and Single-Molecule Magnet Behavior of A Triangular Prismatic {Co₉} Cluster

Ye Tao,^a Lu-Na Wang, ^a Hai-Ye Li, ^a Xiao-Huan Qin, ^a Di Yao, ^a and Fu-Ping Huang ^{*,a}

^a State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China. E-mail: huangfp2010@163.com;

Fig. S1 The crystal photograph of {Co₉}-Eg.

Fig. S2 Powdered X-ray diffraction (XRD) patterns of {Co₉}-Eg.

Fig. S3 Fourier transform Infrared (FT-IR) spectrum of {C09}-Eg.

Fig. S4 The TGA plot of {Co₉}-Eg.

Fable S1. Crystallographic	data and refinement parameters	for { Co ₉ }- Eg (squeeze).
-----------------------------------	--------------------------------	--

Identification code	{C0 ₉ }-Eg
Empirical formula	$Co_9C_{60}H_{48}N_{24}O_{24}$
Formula weight (M)	2019.55
Crystal system	trigonal
Space group	<i>R-3c</i>
a (Å)	15.1762(6)
b (Å)	15.1762(6)
c (Å)	56.387(4)
α (°)	90
β (°)	90
γ (°)	120
V/(Å3)	11246.9(13)
Z	6
Dc (Mg m ⁻³)	1.789
F(000)	6066
Reflections collected	16568/3039
/unique	R(int) = 0.0655
Goodness-of-fit on F2	1.010
Final R indices	$R_1 = 0.0681$
$I > 2\sigma(I)$	$\omega R_2 = 0.1824$
R indices	$R_1 = 0.1324$
(all data)	$\omega R_2 = 0.2355$

{ Co ₉ }- Eg. (A) - <i>y</i> +1, <i>x</i> - <i>y</i> , <i>z</i> ; (B) - <i>x</i> +4/3, - <i>x</i> + <i>y</i> +2/3, - <i>z</i> +1/6; (C) <i>y</i> +1/3, <i>x</i> -1/3, - <i>z</i> +1/6;				
Atomic Distances [Å]				
Col—Ol	2.079 (5)	Co1—N3A	2.263 (5)	
Co1—O3	1.947 (4)	Co2—O3	1.886 (4)	
Co1—O4	2.168 (7)	Co2—O3B	1.885 (4)	
Co1—N1	2.043 (5)	Co2—N4C	1.998 (5)	
Co1—N2	2.403 (5)	Co2—N4A	1.998 (5)	
Bond Angles [°]				
O1—Co1—O4	88.8 (2)	N1—Co1—O4	89.4 (2)	
O1—Co1—N2	152.66 (19)	N1—Co1—N2	74.9 (2)	
O1—Co1—N3A	103.91 (19)	N1—Co1—N3A	101.4 (2)	
O3—Co1—O1	103.81 (19)	N3i—Co1—N2	83.25 (18)	
O3—Co1—O4	80.0 (2)	O3—Co2—O3B	111.6 (3)	
O3—Co1—N1	169.3 (2)	O3—Co2—N4A	99.06 (19)	
O3—Co1—N2	102.70 (19)	O3—Co2—N4C	124.0 (2)	
O3—Co1—N3A	88.58 (19)	O3B—Co2—N4C	99.06 (19)	
O4—Co1—N2	89.3 (2)	O3B—Co2—N4A	124.0 (2)	
O4—Co1—N3A	164.7 (2)	N4A—Co2—N4C	100.8 (3)	
N1—Co1—O1	77.8 (2)			

Table S2. Selected bond length and bond angle for {Co₉}-Eg.

Table S3. Continuous Shape Measures (CShM) for Co^{II} centres using SHAPE.

	Col	Co2		
	[CoN3O3]	[CoN2O2]		
{Co ₉ }-Eg				
	octahedron	tetrahedron		
	2.755	1.818		

Fig. S5 (a) Coordination environment diagram of $\{Co_9\}$ -Eg. Coordination modes of ligands L⁴⁻ (b) and EgO₂H⁻(c).

Fig. S6 The packing arrangement of {Co₉}-Eg along the a-(left) and c-axis (right) directions, respectively.

Fig. S7 Negative ESI-MS spectra of $\{Co_9\}$ -Eg in H₂O (In-Source CID = 0 eV).

{ Co ₉ }- Eg (In-Source CID 0 eV)				
Peaks	Relative Intensity			
Typical Composition	Intensity	Observed <i>m/z</i>	Calculated m/z	
[Co ₂ L(OH)] ⁻	0.20	508.92	508.92	
[Co ₂ L(OH)(HCOOH)] ⁻	0.35	554.92	554.93	
[Co ₂ L(CH ₃ O)(HCOOH)] ⁻	0.50	568.94	568.94	
[Co ₂ L(HCOO)(HCOOH)] ⁻	0.10	582.92	582.92	
[Co ₂ L(HCOO)(HCOOH)(H ₂ O)] ⁻	0.12	600.93	600.93	
[Co ₃ L(HCOO)(CH ₃ O)(OH)] ⁻	0.05	643.87	643.87	
[Co ₃ L(HCOO) ₂ (OH)] ⁻	0.09	657.84	657.85	
[Co ₃ L(HCOO) ₂ (CH ₃ O)] ⁻	0.11	671.86	671.86	
[Co ₆ L ₃ (OH) ₂] ²⁻	1	754.87	754.87	
[Co ₆ L ₃ (OH)(CH ₃ O)] ²⁻	0.65	761.88	761.88	
$[Co_6L_3(CH_3O)_2]^{2-}$	0.15	768.89	768.89	
$[Co_9L_3(EgO_2H)_5(OH)(CH_3O)-H]^{2-}$	0.20	1002.34	1002.35	
$[Co_9L_3(EgO_2H)_6-2H]^{2-}$	0.28	1008.35	1008.35	
[Co ₉ L ₃ (EgO ₂ H) ₅ (CH ₃ O)(HCOO)-H] ²⁻	0.20	1016.34	1016.35	
[Co ₉ L ₃ (EgO ₂ H) ₅ (HCOO) ₂ -H] ²⁻	0.14	1023.34	1023.34	

Table S4. Major species assigned in the ESI-MS in Negative mode.

Fig. S8 The superposed simulated and observed spectra of ESI-MS species for $\{Co_9\}$ -Eg in negative mode (In-Source CID = 0 eV).

Fig. S9 Ion peaks of {C0₉}-Eg in anion modes obtained by ESI-MS test with different ion source voltages (0-100 eV).

Table S5.	Time-dependent	ESI-MS s	spectra	assigned i	n the	HRESI-MS	of {C0 ₉ }-Eg	in	negative
mode.									

				Relative Intensity						
	m/z	Fragment	5	15	30	1	2	4		
			min	min	min	h	h	h		
Cal	300.00	[CoL'] ⁻	0.15	0.20	0.11	0.05	0.04	0.04		
	370.00	Cal. 390.00	0.15	0.20	0.11	0.05	0.04	0.04		
	508.02	[Co ₂ L(OH)] ⁻	0.41	0.38	0.22	0.18	0.18	0.16		
Col	508.92	Cal. 508.92	0.41	0.58	0.22	0.18	0.18	0.10		
	522.03	$[Co_2L(CH_3O)]^-$	1	1	1	1	1	1		
522.95		Cal. 522.94	1	1	1	1	1	1		
592.95	[Co ₃ L(OH) ₂ -H] ⁻	0.02	0.05	0.05	0.03	0	0			
	565.65	Cal. 583.85	0.02	0.05	0.05	0.05	U	0		
Cal	507.86	[Co ₃ L(CH ₃ O)(OH)-H] ⁻	0.07	0.10	0.20	0.11	0	0		
C03L	397.80	Cal. 597.86	0.07	0.10						
	611.99	[Co ₃ L(CH ₃ O) ₂ -H] ⁻	0.10	0.19	.18 0.28	0.17	0.04	0.06		
	011.00	Cal. 611.88	0.10	10 0.18			0.04			
	1107 70	$[Co_5L_2(CH_3O)(OH)_2]^-$		0	0	0.00	0.04	0.03		
Cal	1107.79	Cal. 1107.79	0			0.00	0.04			
C05L2	1125.92	[Co ₅ L ₂ (CH ₃ O) ₃] ⁻	0	0	0.05	0.20	0.11	0.08		
	1155.62	Cal. 1135.82	0	0 0	0.05	0.20	0.11	0.08		
Cal	807.01	$[Co_6L_3(EgO_2H)_2(H_2O)]^{2-}$	0	0		0.07	0.12	0.07		
$ Co_6 L_3 807.91$	007.91	Cal. 807.91			U	0.00	0.12	0.07		

	814.92	[Co ₆ L ₃ (EgO ₂ H) ₂ (CH ₃ OH)] ²⁻ Cal. 814.92	0	0	0	0.18	0.09	0.06
1616.83		[Co ₆ L ₃ (EgO ₂ H ₂) ₂ (H ₂ O)-H] ⁻ Cal. 1616.83	0	0	0	0.04	0.03	0
	1630.84	[Co ₆ L ₃ (EgO ₂ H ₂) ₂ (CH ₃ OH)-H] ⁻ Cal. 1630.84	0	0	0	0.20	0.10	0.11
1705.91		[Co ₆ L ₃ (EgO ₂ H ₂) ₃ (Me ₂ NH)-H] ⁻ Cal. 1705.91	0	0	0	0.12	0.07	0.07
Co ₇ L ₃	874.40	[Co ₇ L ₃ (EgO ₂ H) ₃ (CH ₃ O)] ²⁻ Cal. 874.40	0	0	0	0	0.03	0.07
	1002.35	[Co ₉ L ₃ (EgO ₂ H) ₅ (OH)(CH ₃ O)-H] ²⁻ Cal. 1002.35	0	0	0	0	0.04	0.10
Co ₉ L ₃ 1008.3	1008.35	[Co ₉ L ₃ (EgO ₂ H) ₆ -2H] ²⁻ Cal. 1008.35	0	0	0	0	0.08	0.14
	1030.88	[Co ₉ L ₃ (EgO ₂ H) ₆ (Me ₂ NH)-2H] ²⁻ Cal. 1030.88	0	0	0	0	0.06	0.07

Fig. S10 The superposed simulated and observed spectra of time-dependent ESI-MS species for {C0₉}-Eg in negative mode.

Fig. S11 The field-cold susceptibility from 2 to 15 K at different magnetic fields.

Fig. S12 Calculated (red solid line) and experimental (blue square dot) data of $1/\chi_M$ of {Co₉}-Eg.

Fig. S13. Field dependence of magnetization for {C0₉}-Eg. Inset: M versus H/T plot for {C0₉}-Eg.

Fig S14. Variable magnetic field magnetization measurement for {C09}-Eg at 2 K.

Table S6. Best fit parameters of the generalized Debye model at temperature ranging from 2 to 5 K under a 0 Oe DC field for {**Co**₉}-**Eg**. χ_T stands for the isothermal susceptibility, χ_S for the adiabatic susceptibility, α for the relaxation time, and τ accounts for the distribution width of the relaxation time.

	χ_S / cm ³ mol ⁻¹ K	$\chi_T / cm^3 mol^{-1}K$	τ/s	α
2.0	0.71464	4.77452	0.00164	0.45234
2.3	0.65316	4.17136	0.0016	0.44468
2.6	0.63446	3.70872	0.00153	0.42442
2.9	0.6736	3.31546	0.00134	0.36403
3.2	0.69055	2.9846	9.2461E-4	0.27992
3.5	0.67746	2.71826	5.30826E-4	0.20821
3.8	0.67763	2.50096	2.85496E-4	0.15523
4.1	0.7078	2.31939	1.56076E-4	0.11502
4.4	0.73099	2.15968	8.64443E-5	0.07967
4.7	0.83374	2.03059	5.34317E-5	0.04784
5.0	0.94051	1.91396	3.40955E-5	0.02379

Squeeze results for $\{Co_9\}$ -Eg is as follows:

loop _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume platon squeeze void count electrons _platon_squeeze_void_content 15'' 1 0.000 0.000 0.00072 2 0.000 36 3'' 0.000 0.097 5'' 3 0.000 0.444 0.250 11 0.000 3'' 4 0.000 0.403 36 5 0.000 0.000 72 15'' 0.500 0.000 0.000 0.597 36 3'' 6 5'' 7 0.000 0.556 0.750 11 0.000 0.000 0.903 3'' 8 36 9 5'' 9 0.111 0.778 0.083 10 0.111 0.333 0.583 9 5'' 9 5'' 0.222 0.333 0.083 11 0.667 12 0.333 73 16'' 0.167 5'' 13 0.222 0.889 0.583 9 14 0.333 0.667 0.667 73 15'' 0.333 0.667 0.263 35 3'' 15 3'' 0.333 0.763 35 16 0.667 17 0.333 0.667 0.070 35 3''

18	0.333	0.667	0.570	35	3 ' '
19	0.333	0.222	0.417	9	5''
20	0.333	0.111	0.917	9	5''
21	0.444	1.000	0.250	11	5''
22	0.444	0.444	0.750	11	5''
23	0.555	0.556	0.250	11	5''
24	0.667	0.333	0.333	72	15 ' '
25	0.555	0.000	0.750	11	5''
26	0.667	0.333	0.833	72	15 ' '
27	0.667	0.333	0.430	35	3 ' '
28	0.667	0.333	0.930	35	3 ' '
29	0.667	0.333	0.237	35	3 ' '
30	0.667	0.333	0.737	35	3 ' '
31	0.667	0.889	0.083	10	5''
32	0.667	0.778	0.583	10	5 ' '
33	0.778	0.111	0.417	9	5''
34	0.778	0.667	0.917	10	5''
35	0.889	0.667	0.417	10	5''
36	0.889	0.222	0.917	9	5''

That is, SQUEEZE gives 217 electrons/unit cell for the voids. If these electrons are all from H₂O (10e⁻), each unit cell has $217/10 \approx 22$ H₂O molecules, and each formula unit has 3.5 H₂O molecules (since Z = 6). So the suitable formula for this compound should be [CO₉L₃(CH₂OCH₂OH)₆]·3.5H₂O