Supporting Information For

Ligand-partially-protected metal-chalcogenide supertetrahedral clusters

Jin Wu,^a Peipei Sun,^a Xiang Wang,^{c,*} Ning Chen,^a and Tao Wu^{a,b,*}

^aCollege of Chemistry, Chemical Engineering and Material Sciences, Soochow University, Suzhou, 215123.

^bCollege of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632.

^cSchool of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614004.

Supplementary Tables and Figures

Compound	ISC-24-MnSnS	ISC-25-MnSnS-SPh	ISC-26-MnSnSeS-SPh	ISC-26-MnSnSeCl-SePh	
E. F.	$C_{63}H_{141}Mn_4N_9S_{17}Sn_4$	$C_{60}H_{111}Mn_4N_6S_{17}Sn_4\\$	$C_{66}H_{116}Mn_4N_6S_5Se_{12}Sn_4$	$C_{66}H_{126}Mn_4N_6Se_{16.57}Cl_{0.43}Sn_4$	
F. W.	2303.653	2192.33	2795.98	3022.79	
Morphology	block	rhombohedral	rhombohedral	rhombohedral	
Crystal system	Cubic	trigonal	trigonal	trigonal	
Space group	<i>P-43n</i>	<i>R-3</i>	<i>R-3</i>	<i>R-3</i>	
Ζ	6	6	6	6	
T/K	120.00	120.00	123.00	120.03	
λ/Å	0.71073	0.71073	0.71073	0.71073	
a/Å	27.9971(13)	16.1766(5)	16.4718(5)	16.5878(5)	
b/Å	27.9971(13)	16.1766(5)	16.4718(5)	16.5878(5)	
c/Å	27.9971(13)	62.4767(18)	62.634(2)	62.041(2)	
a/o	90	90	90	90	
$eta/^{\mathrm{o}}$	90	90	90	90	
$\gamma^{\prime o}$	90	120	120	120	
$V/Å^3$	21945(3)	14158.7(10)	14717.2(10)	14783.7(10)	
<i>D</i> (g/cm ³)	1.396	1.547	1.893	2.037	
μ/mm^{-1}	2.111	2.449	6.093	7.662	
F(000)	9392.0	6630.0	8052.0	8610.0	
Col. refs.	469759	20190	22357	127820	
Indep. refs.	3822	4464	5937	6022	
GOF on F^2	1.103	1.038	1.046	1.049	
$R_1, wR_2 (I > 2\sigma(I))$	0.0349, 0.0790	0.0446, 0.1157	0.0543, 0.1279	0.0502, 0.1172	
R_1 , wR_2 (all data)	0.0462, 0.0939	0.0531, 0.1255	0.0953, 0.1566	0.0655, 0.1327	

Table S1. The structure refinement parameters on ISC-24, ISC-25 and ISC-26 series.

Abbreviations: E.

F.: Empirical

formula;

F.

W.:

Formula Weight.

Compound name	Cluster formula	Туре	Terminating reagent	Ref.
ISC-1	$[Ga_{10}S_{16}(SH)(3,5-DMP)_3]^{3-}$	А	3,5-dimethylpyridine	1
ISC-2	$[Ga_{10}S_{16}(SH)(3,4-DMP)_3]^{3-}$	А	3,4-dimethylpyridine	1
ISC-3	$[In_{10}S_{16}(DBN)_4]^{2-}$	А	DBN	1
ISC-9	$[In_{22}Cd_{13}S_{52}(1\text{-}MIM)_4]^{12\text{-}}$	А	1-methylimidazole	1
T5-1	$(C_9H_{17}N_2)_{12}[Cu_5In_{30}Se_{52}Cl_3(C_3H_4N_2)]$	А	imidazole	2
IL-InSe-3	$C_{53}H_{99}N_{12}Cl_{3}In_{10}Se_{16}$	А	1-butyl-2-methylimidazole	3
1c	[Bmmim]4[Sn ₁₀ S ₁₆ O4(SMe)4]	В	Methyl	4
1a	$[Bmmim]_7[Sn_{10}S_{16}O_4(SBu)_4]Br_3$	В	Butyl	5
ISC-25-MnSnS-SPh	$[Mn_4Sn_4S_{14}(SPh)_3]^{7-}$	С	Phenyl	This work
ISC-26-MnSnSeCl-SePh	$[Mn_4Sn_4Se_{12.6}Cl_{0.4}(SePh)_4]^{5.6}$	С	Phenyl	This work
ISC-26-MnSnSeS-SPh	$[Mn_4Sn_4Se_{12}S(SPh)_4]^{6-}$	С	Phenyl	This work

Table S2. Summary of the existing PP-type metal chalcogenide supertetrahedral cluster. The cases

 using the same capping reagent but different in sizes or components were omitted for clarity.

Notes: Type A: Nitrogen containing species terminated; Type B, Alkyl group covalently terminated, Type C, Aryl group covalently terminated.

Fig. S1. Typical models of *Cn* series clusters (or called: ligand-protected type, LP-type) and *Tn* series clusters (or called: ligand-free type, LF-type). (a) LP-type MCSCs, the excess negative charge generated by S^{2-} were neutralized by covalent linked ligands; (b) LF-type MCSCs, the excess negative charge generated by S^{2-} were neutralized by the protonated organic amines (usually called templates in the synthetic process), the counterions were blurred to highlight the cluster; (c) The hydrogen bonds that further stable the isolated clusters. Green, Cd atom; pink, Zn atom; yellow, S atom, respectively.

Fig. S2. Summary of the existing types of ligand protected metal chalcogenide supertetrahedral clusters..

Fig. S3. Powder X-ray diffraction (PXRD) pattern of as-synthesized ISC-24-MnSnS and its simulated results.

Fig. S4. Powder X-ray diffraction (PXRD) pattern of as-synthesized ISC-25-MnSnS-SPh and its simulated results.

Fig. S5. Powder X-ray diffraction (PXRD) pattern of as-synthesized ISC-26-MnSnSeCl-SePh and its simulated results.

Fig. S6. Powder X-ray diffraction (PXRD) pattern of as-synthesized ISC-26-MnSnSeS-SPh and its simulated results.

Fig. S7. SEM image (left) and EDS result (right) of ISC-24-MnSnS (a & e); ISC-25-MnSnS-SPh (b & f); ISC-26-MnSnSeCI-SePh (c & g) and ISC-26-MnSnSeS-SPh (d & h). According to the molecular formula of the title compounds, the ratio of Mn: Sn: Q (Q represents S or Se) in the ISC-24, ISC-25 and ISC-26 series structures should be 4:4:17, and the converted atomic percentage should be Mn (16%), Sn (16%), Q (68%), respectively. But the weak signal of Cl in ISC-26-MnSnSnSeCI-SePh has been judged as impurity by the instrument, so the test result here should be Mn: Sn: Se=4:4:16, that is, the atomic percentage should be Mn (16%), Sn (16%), Q (68%), respectively. The Cl existence has been further verified by XPS test. All in all, the test results are in good agreement with the fitting results.

Fig. S8. SEM image (left) and EDS results (right) of **ISC-25** or **ISC-26** series with different components. According to the molecule formula of the title compounds, the ratio of Mn: Sn: Q (Q represents S or Se) in the **ISC-25** or **ISC-26** series structures should be 4:4:17, and the converted atomic percentage should be Mn (16%), Sn (16%), Q (68%), respectively. The above test results are in good agreement with the fitting results.

Fig. S9. TGA curves of **ISC-25-MnSnS-SPh**. **ISC-25-MnSnS-SPh** undergoes the total step weight loss about 32.5% from room temperature to 400°C, which is in good agreement with the calculated value from the SCXRD analysis, corresponding to the loss of the organic components (Calcd. 33.62%).

Fig. S10. TGA curves of **ISC-26-MnSnSeCI-SePh**. **ISC-26-MnSnSeCI-SePh** undergoes the total step weight loss about 21.2% from room temperature to 350°C, which is in good agreement with the calculated value from the SCXRD analysis, corresponding to the loss of the organic components (Calcd. 22.51%).

Fig. S11. ¹H-NMR spectrum for **ISC-25-MnSnS-SPh**. The two strong signal at 2.5 ppm and 3.3 ppm are inferred to d^6 -DMSO and H₂O, respectively. The signals at chemical shift between 7-8 ppm confirmed the existence of benzene species, while the signals at 8-9 ppm can be determined as N-H…S hydrogen bonds between the protonated 3,5-DMP and the cluster.

Fig. S12. Chemical stability test of **ISC-24-MnSnS**. The crystals were immersed acetonitrile (MeCN) for 0.5 or 7 days, and then the solvent was removed and the crystals were dried for further testing.

Fig. S13. FT-IR spectra of ISC-24, ISC-25 and ISC-26 series compounds.

Fig. S14. Raman spectra of ISC-24, ISC-25 and ISC-26 series compounds.

Fig. S15. XPS spectra of ISC-26-MnSnSeCl-SePh.

Fig. S16. High-resolution XPS spectra of Cl 2p in ISC-26-MnSnSeCl-SePh.

Fig. S17. XPS spectra of ISC-25-MnSnS-SPh.

Fig. S18. High-resolution XPS spectra of Mn 2p in ISC-25-MnSnS-SPh.

Fig. S19. Ellipsoid plot of ISC-24-MnSnS.

Fig. S20. Ellipsoid plot of ISC-25-MnSnS-SPh.

Fig. S21. Ellipsoid plot of ISC-26-MnSnSeCl-SePh.

Fig. S22. Ellipsoid plot of ISC-26-MnSnSeS-SPh.

References

- 1. Wu, T.; Bu, X.; Liao, P.; Wang, L.; Zheng, S. T.; Ma, R. & Feng, P., Superbase Route to Supertetrahedral Chalcogenide Clusters. J. Am. Chem. Soc. 2012, 134, 3619-3622.
- Wang, Y.; Zhu, Z.; Sun, Z.; Hu, Q.; Li, J.; Jiang, J. & Huang, X., Discrete Supertetrahedral T5 Selenide Clusters and Their Se/S Solid Solutions: Ionic-Liquid-Assisted Precursor Route Syntheses and Photocatalytic Properties. *Chem. Eur. J.* 2020, *26*, 1624-1632.
- Shen, N.-N.; Hu, B.; Cheng, C.-C.; Zou, G.-D.; Hu, Q.-Q.; Du, C.-F.; Li, J.-R. & Huang, X.-Y., Discrete Supertetrahedral T3 InQ Clusters (Q = S, S/Se, Se, Se/Te): Ionothermal Syntheses and Tunable Optical and Photodegradation Properties. *Cryst. Growth & Des.* 2018, 18, 962-968.
- Peters, B.; Santner, S.; Donsbach, C.; Vopel, P.; Smarsly, B. & Dehnen, S., Ionic liquid cations as methylation agent for extremely weak chalcogenido metalate nucleophiles. *Chem. Sci.* 2019, 10, 5211-5217.
- 5. Peters, B.; Stuhrmann, G.; Mack, F.; Weigend, F. & Dehnen, S., Highly Soluble Supertetrahedra upon Selective Partial Butylation of Chalcogenido Metalate Clusters in Ionic Liquids. *Angew. Chem. Int. Ed.* **2021**, *60*, 17622-17628.