Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information

2 Fabrication of Core-shell like structured Polymeric ionic liquid

3

hybrid catalysts for aqueous reactions

4 Xiaotong Lu^a, Shengnan Li^a, Chengyao Zhao^a, Yujing Liu^{a,b}, Zhongqiu Liu^{a,b}, Anguo Ying^{a,b,*}

5 ^a School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China

6 b Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and

7 Chemical Engineering, Qufu Normal University, P. R. China

8

9 E-mail addresses: yinganguo@163.com (A. Ying).

10

12 1. Experimental

13 **1.1 Preparation of the ILs**

Synthesis of hydrophilic ionic liquids (MIE ILs). (1) Synthesis of tosylated mono-14 methoxytriethylene glycol (tosylated m-TEG). A solution of triethylene glycol 15 monomethyl ether (10.324 g, 62.88 mmol, 1.2eq) and p-Toluenesulfonyl chloride 16 (10.01 g, 52.4 mmol, 1eq) in DCM (100 mL) was cooled in an ice bath at N_2 17 atmosphere, and then triethylamine was added drop by drop to the solution slowly. 18 The solution was stirred at room temperature for 12 h and then removed insoluble 19 matter by filtration. The remaining solution was washed by deionized water (3 x 100 20 mL) and saturated NaHCO₃ (100 mL) in turn and dried over MgSO₄, and the pure 21 product was obtained by column chromatography (PE: EA=1:3), eluted purified 22 product 11.46 g, Yield 68.6%. 23

(2) Synthesis of 3-(2-(2-(2-methoxy)ethoxy)ethoxy)ethyl)-1-vinyl-1H-imidazol-3-24 ium 4-methylbenzenesulfonate (MIE-ILs). Tosylated m-TEG (2 mmol, 0.64 g) was 25 added to the mixture of vinylimidazole (2 mmol, 0.18 g) and K₂CO₃ (2 mmol, 0.276 g) 26 in dry CH₃CN (10 mL) and stirred at 60 °C for 24 h at N₂ atmosphere. The reaction 27 was cooled to room temperature. The solid material was separated by filtration and 28 washed by H₂O and EtOAc and obtained the MIE-ILs by reduced pressure distillation. 29 The structure and chemical composition of MIE-ILs were identified by ¹H NMR 30 spectrum (see Figure S1). ¹H NMR (500 MHz, DMSO): δ (ppm): 7.68-7.66 (d, 1H,), 31 7.58-7.55 (d, 2H,), 7.49-7.51 (d, 1H), 5.67-5.72 (m, 1H), 5.34-5.31 (m, 1H), 4.28-4.34 32 (m, 2H), 3.77-3.83 (m, 2H), 3.44-3.62 (m, 10H), 3.25 (s, 3H). 33

Scheme S1. Synthesis of the SPA monomer

38

Fig. S1 ¹H NMR of the MIE-ILs monomer

39

40 1.2 Equilibrium adsorption isotherms of MIE@Pd/SiNP-CPDB and 41 MIE@Pd/SiNP-CPDB(no PTES) nanoparticles

42 50 μL of styrene were added to 5 mL of water containing 20 mg of different
43 nanoparticles at 303 K, 308 K, 313 K, and 318 K respectively. The adsorption was

carried out in a sealed glass vial by equilibrating the mixture for 1 h on a magnetic 44 stirring apparatus. After adsorption, the materials were directly removed from solution 45 by filtration. The styrene was extracted by ethyl acetate for 3 times. Then, the amount 46 of styrene was measured with an internal standard method by gas chromatography. 47 The adsorption enthalpy was calculated following the derivative Clausius-Clapeyron 48 equation, $\ln Ce = \Delta H/(RT) + \ln K$, where ΔH is the adsorption enthalpy (KJ/mol), T is 49 the absolute temperature (K), Ce represent the initial and equilibrium concentrations 50 (mg/g), R is the ideal gas constant [8.314 J/(mol·K)], and K is a constant. 51

52 **1.3** Characterizations of the nMIE@Pd@SiNP-CPDB catalysts

XRD patterns of the nMIE@Pd/SiNP-CPDB catalysts were determined with a 53 PANalytical Empyrean X-ray diffractometer (Netherlands). The scanning speed was 54 10° min⁻¹ from $2\theta = 10^{\circ}$ to 90° . The ICP-OES and fourier transform infrared (FTIR) 55 spectra of the samples were recorded on a Thermo Fisher Scientific (US). XPS 56 analysis of the surface microstructure information of the samples were performed 57 with a Thermo Kalpha X-ray photo-electron spectrometer (US). The organic elements 58 analysis of the catalysts samples were tested by means of a Elementar Vario EL 59 (Germany). The scanning electron microscope (SEM) of the samples were performed 60 with a Sigma 500VP (Carl Zeiss AG) and transmission electron microscope (TEM) of 61 the samples were observed with a JEM-2100PLUS (80-200kV, Japan). N2 62 adsorption-desorption isotherms of the samples were recorded with a KuboX1000 63 series surface area and porosity analyzer (CN). The thermo gravimetric analysis (TGA) 64 of the samples were performed with a TA system (NETZSCH, Germany). The 65

66 conversion of various substrates was determined by GC-MS, nitrogen was used as the 67 carrier gas with a flow of 30 mL·min⁻¹, injector temperature and detector temperature 68 were 250 °C, column temperature was programmed from 50 to 280 °C with 5 69 °C·min⁻¹.

70

71 Fig. S2 Chemical structure schematic of a) Hydrophobic silicon core and b)
72 Ammoniated hydrophobic silicon cores.

73

74 Table S1

75	Textural	narameters	of the	nrenared	organic	_inorga	nic hy	dror	hohic	silica	cores
15	ICATULA	parameters	or the	preparea	organie	morga	inc ny	urop		Silica	00103

Entry	OSi/Si (Mol)	BET surface	Pore volume	Average pore	
		area (m ² g ⁻¹)	$(cm^3 g^{-1})$	size (nm)	
1	1- 0	552	2.11	4.68	
2	1- 0.1	896	0.88	2.80	
3	1- 0.2	804	0.79	2.85	
4	1- 0.3	859	0.70	2.87	
5	1- 0.4	836	0.67	2.85	
6	1- 0.5	850	0.63	2.86	

78 Table S2

79 Textural parameters of Pd/SiNP-CPDB, MIE@Pd/SiNP-CPDB, 2MIE@Pd/SiNP-

Entry	Sample	BET surface	Pore volume	Average pore	
		area (m ² g ⁻¹)	$(cm^3 g^{-1})$	size (nm)	
1	Pd/SiNP-CPDB	713	0.65	2.81	
2	MIE@Pd/SiNP-CPDB	574	0.55	2.74	
3	2MIE@Pd/SiNP-CPDB	489	0.41	2.50	
4	3MIE@Pd/SiNP-CPDB	409	0.31	2.41	

80 CPDB and 3MIE@Pd/SiNP-CPDB.

81

82

83 Figure S3. N₂ adsorption-desorption isotherm and pore size distribution of SiNP84 CPDB with OSi/Si molar ratio of 0/1.

85

86

88 Figure S4. EDX spectrum of the MIE@Pd/SiNP-CPDB catalyst.

91 Figure S5. Low angle XRD of SiNP-CPDB, Pd/SiNP-CPDB and MIE@Pd/SiNP-92 CPDB.

94 Figure S6. Hydrogenation of styrene catalyzed by MIE@Pd/SiNP-CPDB and

95 MIE@Pd/SiNP-CPDB (no PTES addition).

Table S3. The catalytic effect of different catalysts on styrene hydrogenation.

|--|

Entry	catalyst	Time	condition	(Con.)	Ref.
		(min)		(%)	
1	MIE@Pd/SiNP-CPDB	10	25 °C	100	This
			101 kPa		work
2	[C4AzoC2DMEA]Br/Pd@SM	40	25 °C	>99	1
			101 kPa		
3	Pd/MSS-C20	35	40 °C	89	2
			0.35 MPa		
4	Pd/SN-ON	90	40 °C	>99	3
			0.35 MPa		
5	Pd/PEG4000	90	25 °C	60	4
			101 kPa		

^{106 3.69 (}t, 2H), 2.76-2.72 (t, 2H), 1.96-1.89 (m, 2H).

107 Figure S8. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2

- 113 3H,), 3.01-2.97 (t, 2H), 2.83-2.79 (t, 2H).
- 114 Figure S9. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2

- ¹H NMR (500 MHz, CDCl₃): δ (ppm): 9.85 (s,1H) 7.34-7.30 (m, 2H,), 7.25-7.21 (m, 119
- 3H,), 3.01-2.97 (t, 2H), 2.83-2.79 (t, 2H). 120
- Figure S10. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2 121

122 of main text, entry 3).

126 ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.39-7.32 (M, 2H) , 7.30 (S, 1H), 7.27-7.25

127 (t, 2H,), 3.01-2.97 (t, 2H), 2.67-2.63 (t, 2H).

128 Figure S11. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2

- 133 ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.33-7.29 (d, 2H), 7.28-7.12 (m, 3H), 2.70-
- 134 2.59 (m, 2H), 1.28-1.22 (m, 3H).
- 135 Figure S12. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2

142 Figure S13. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2

Figure S14. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2
of main text, entry 7).

154 ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.33-7.31 (m, 2H), 7.23-7.19 (m, 3H), 2.64-

- 155 2.61 (t, 2H), 1.73-1.64 (m, 2H), 1.00-0.96 (t, 3H).
- 156 Figure S15. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2

- 162 2H), 2.71-2.65 (m, 2H), 1.28-1.25 (t, 3H).
- 163 Figure S16. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2
- 164 of main text, entry 9).

- 169 3H), 1.28-1.24 (t, 3H).
- 170 Figure S17. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2
- 171 of main text, entry 10).

175 ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.33-7.12 (m, 5H), 2.70-2.59 (m, 2H), 1.28-

176 1.22 (m, 3H).

177 Figure S18. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2

- (m, 2H), 1.45-1.35 (m, 2H), 1.18-1.14 (t, 3H), 0.97-0.93 (t, 3H). 183
- Figure S19. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2 184

of main text, entry 12). 185

¹H NMR (500 MHz, CDCl₃): δ (ppm):3.46-3.43 (t, 2H), 1.90-1.83 (m, 2H), 1.54-1.43

- 190 (m, 2H), 0.98-0.94 (t, 3H).
- 191 Figure S20. The GC-MS and ¹H NMR spectrum of the hydrogenation results (table 2
- 192 of main text, entry 13).

- 194 **Reference.**
- 195 1. Z. Li, Y. Shi, A. Zhu, Y. Zhao, H. Wang, B. P. Binks and J. Wang, Angew Chem
- 196 Int Ed Engl, 2021, 60, 3928-3933.
- 197 2. L. Fu, S. Li, Z. Han, H. Liu and H. yang, Chem Commun (Camb), 2014, 50, 10045-
- 198 10048.
- 199 3. J. Huang and H. Yang, Chem Commun (Camb), 2015, 51, 7333-7336.
- 200 4. F. Harraz, S. El-Hout, H. Killa and I. Ibrahim, Journal of catalysis, 2012, 286, 184-
- 201 192.