Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Electronic Supporting Information for: Organometallic Flow Chemistry: *Solvento* Complexes

Benjamin J. Frogley,^a Anthony F. Hill, *^a Hideki Onagi^a and Lachlan J. Watson^a

Experimental

General Considerations

Infrared spectra were obtained using a PerkinElmer Spectrum One FT-IR spectrometer. The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s (strong), m (medium), w (weak), sh (shoulder) and br (broad). NMR spectra were obtained on Varian 400 (¹H at 399.8, ¹³C at 100.5), Bruker Avance 400 (¹H at 400.1 MHz, ¹³C at 100.6 MHz, ^{31}P at 162.0 MHz), Bruker Avance 600 (1H at 600.0 MHz, ^{13}C at 150.9 MHz) or a Bruker Avance 700 (¹H at 700.0 MHz, ¹³C at 176.1 MHz) spectrometers at the temperatures indicated. Chemical shifts (δ) are reported in ppm with coupling constants given in Hz and are referenced to the solvent peak, or external references (85% H₃PO₄ in H₂O for ³¹P). The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. Where applicable, the stated multiplicity refers to that of the primary resonance exclusive of ¹⁸³W satellites. In some cases, distinct peaks were observed in the ¹H and ¹³C{¹H} NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal places for ¹H NMR, 1 decimal place for ¹³C NMR) they are reported as having the same chemical shift. High-resolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile, dichloromethane or methanol as the matrix.

The data for each complex are consistent with those previously reported for each complex: $[W(CO)_5(PPh_3)]$,¹ $[Mo(CO)_5(PPh_3)]$,¹ $[Cr(CO)_5(PPh_3)]$,¹ $[Mn(Cp')(CO)_2(PPh_3)]^2$ and $[Re(Cp^*)(CO)_2(PPh_3)]^3$. Crude NMR spectra are provided along with the isolated products for context.

Computational Details

Computational studies were performed by using the *SPARTAN20*[®] suite of programs.⁴ Geometry optimisation (gas phase) for diatomics and metal complexes was performed at the DFT level of theory using the exchange functionals ω B97X-D of Head-Gordon.^{5,6} The Los Alamos effective core potential type basis set (LANL2D ζ) of Hay and Wadt ⁷⁻⁹ was used for I, Mo and W while Pople 6-31G* basis sets¹⁰ were used for all other atoms. Frequency calculations were performed for all compounds to confirm that each optimized structure was a local minimum and also to identify vibrational modes of interest. Cartesian atomic coordinates are provided below.

General synthetic strategy

Following the quenching of *solvento* complexes with PPh₃, the solutions were worked with under atmospheric conditions. Mixtures were recrystallised from Et_2O /hexane or subjected to column chromatography for purification (neutral alumina, gradient elution with petroleum spirits (40-60 °C or 60-80 °C)/diethyl ether or petroleum spirits (40-60 °C/CH₂Cl₂).

Data for known compounds

[W(CO)₅(PPh₃)]: IR (THF, cm⁻¹): 2072 m, 1983 w, 1940 vs; v_{co}. ¹H NMR (400 MHz, CDCl₃, 298 K): δ_{H} = 7.48 (m, 15 H, PPh₃). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K): δ_{P} = 20.85 (¹J_{WP} = 244 Hz). ¹³C{¹H} NMR (150 MHz, CDCl₃, 298 K): δ_{C} = 199.32 (d, ²J_{PC} = 7 Hz, ¹J_{WC} = 72 Hz, trans-WCO), 197.40 (d, ²J_{PC} = 7 Hz, ¹J_{WC} = 63 Hz, *cis*-WCO), 135.4 (d, ¹J_{PC} = 41 Hz, *i*-PPh₃), 133.1 (d, ²J_{PC} = 12 Hz, *o*-PPh₃), 130.5 (d, ⁴J_{PC} = 2 Hz, *p*-PPh₃), 128.8 (d, ³J_{PC} = 10 Hz, *m*-PPh₃). No discernible fragments were observed in the ESI-MS (+ve ion) spectrum other than [PPh₃ + H]⁺.

^{a.} Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.

^{*} Corresponding author. E-mail: a.hill@anu.edu.au

CCDC 1949481–1949485 contain the supplementary crystallographic data for this paper, and are available free of charge from The Cambridge Crystallographic Data Centre.

$$\label{eq:constraint} \begin{split} & [\text{Mo(CO)}_{\text{5}}(\text{PPh}_{3})]: \text{IR} (\text{THF}, \text{cm}^{-1}): 2072 \text{ m}, 1988 \text{ w}, 1947 \text{ vs}; \text{ $v_{CO}}.^{1}\text{H} \\ & \text{NMR} (400 \text{ MHz}, \text{CDCl}_{3}, 298 \text{ K}): \delta_{\text{H}} = 7.44 (\text{m}, 15 \text{ H}, \text{PPh}_{3}). \, ^{31}\text{P}\{^{1}\text{H}\} \\ & \text{NMR} (162 \text{ MHz}, \text{CDCl}_{3}, 298 \text{ K}): \delta_{\text{P}} = 37.68. \, ^{13}\text{C}\{^{1}\text{H}\} \text{ NMR} (150 \text{ MHz}, \\ & \text{CDCl}_{3}, 298 \text{ K}): \delta_{\text{C}} = 210.4 (\text{d}, \, ^{2}J_{\text{PC}} = 23 \text{ Hz}, \textit{trans}\text{-MoCO}), 205.8 (\text{d}, \, ^{2}J_{\text{PC}} \\ & = 9 \text{ Hz}, \textit{cis}\text{-MoCO}), 135.6 (\text{d}, \, ^{1}J_{\text{PC}} = 35 \text{ Hz}, \textit{i}\text{-PPh}_{3}), 133.0 (\text{d}, \, ^{2}J_{\text{PC}} = 13 \\ & \text{Hz}, \textit{o}\text{-PPh}_{3}), 130.2 (\text{d}, \, ^{4}J_{\text{PC}} = 2 \text{ Hz}, \textit{p}\text{-PPh}_{3}), 128.7 (\text{d}, \, ^{3}J_{\text{PC}} = 9 \text{ Hz}, \textit{m}\text{-} \\ & \text{PPh}_{3}). \text{ This compound was not amenable to ESI-MS spectroscopic conditions.} \end{split}$$

$$\label{eq:composition} \begin{split} & [Cr(CO)_5(PPh_3)]: \mbox{ IR (THF, cm^-1): } 2063 \mbox{ m, 1983 w, 1942 vs; } v_{CO}. \ ^1H \\ & \mbox{ NMR (400 MHz, CDCl_3, 298 K): } \delta_H = 7.44 \mbox{ (m, 15 H, PPh_3). } ^{31}P\{^1H\} \\ & \mbox{ NMR (162 MHz, CDCl_3, 298 K): } \delta_P = 55.89. \ ^{13}C\{^1H\} \mbox{ NMR (150 MHz, CDCl_3, 298 K): } \delta_C = 221.7 \mbox{ (d, } ^2J_{PC} = 7 \mbox{ Hz, trans-CrCO}, 216.9 \mbox{ (d, } ^2J_{PC} = 13 \mbox{ Hz, cis-CrCO}, 135.5 \mbox{ (d, } ^1J_{PC} = 36 \mbox{ Hz, i-PPh_3}, 132.9 \mbox{ (d, } ^2J_{PC} = 11 \mbox{ Hz, o-PPh_3}, 130.3 \mbox{ (s, p-PPh_3}, 128.7 \mbox{ (d, } ^3J_{PC} = 10 \mbox{ Hz, m-PPh_3}. \mbox{ This compound was not amenable to ESI-MS spectroscopic conditions. } \end{split}$$

 $\begin{bmatrix} Mn(Cp')(CO)_2(PPh_3) \end{bmatrix}: IR (THF, cm^{-1}): 1933, 1870 v_{CO}. {}^{1}H NMR (400 MHz, CDCl_3, 298 K): \delta_H = 7.47 (m, 15 H, PPh_3), 4.19, 4.05 (2 x brs, 2 x 2 H, C_5H_4CH_3), 1.95 (s, 3 H, C_5H_4CH_3). {}^{31}P{}^{1}H} NMR (162 MHz, CDCl_3, 298 K): \delta_P = 92.73. {}^{13}C{}^{1}H\} NMR (150 MHz, CDCl_3, 298 K): \delta_C = 233.1 (d, {}^{2}J_{PC} = 24 Hz, MnCO), 138.4 (d, {}^{1}J_{PC} = 40 Hz, i-PPh_3), 133.0 (d, {}^{2}J_{PC} = 10 Hz, o-PPh_3), 129.5 (d, {}^{4}J_{PC} = 2 Hz, p-PPh_3), 128.2 (d, {}^{3}J_{PC} = 9 Hz, m-PPh_3), 99.1 (C_4H_4CCH_3), 83.2, 82.0 (2 x s, C_4H_4CCH_3), 13.9 (C_4H_4CCH_3). MS (ESI, +ve ion, m/z): Found: 452.0730. Calcd for C_{26}H_{22}{}^{55}MnO_2P [M+Na]^+: 452.0738.$

[Re(Cp*)(CO)₂(PPh₃)]: IR (THF, cm⁻¹): 1918, 1855 v_{CO} . ¹H NMR (700 MHz, CDCl₃, 298 K): δ_{H} = 7.45, 7.35 (2 x m, 15 H, PPh₃), 1.82 (s, 15 H, Cp*). ³¹P{¹H} NMR (283 MHz, CDCl₃, 298 K): δ_{P} = 33.50. ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_{C} = 206.7 (d, ²J_{PC} = 8 Hz, ReCO), 137.8 (d, ¹J_{PC} = 50 Hz, *i*-PPh₃), 133.5 (d, ²J_{PC} = 11 Hz, *o*-PPh₃), 129.5 (d, ⁴J_{PC} = 2 Hz, *p*-PPh₃), 128.0 (d, ³J_{PC} = 10 Hz, *m*-PPh₃), 95.6 (C_5 (CH₃)₅), 10.5 (C_5 (CH₃)₅). MS (ESI, +ve ion, *m*/z): Found: 641.1621. Calcd for C₃₀H₃₁O₂P¹⁸⁷Re [M+H]⁺: 641.1620.

Optimised Geometries and Cartesian Coordinates

[W(CO)₆]

Optimised structure of [W(CO)₆] in the gas phase

Cartesian coordinates of optimised $[W(CO)_6]$

Atom	x	Y	Z
W	-0.000002	-0.000020	-0.000000
С	0.000000	2.060635	0.000000
0	0.000002	3.206866	0.000000
С	2.060652	0.000002	0.000000
0	3.206883	0.000022	0.000000
С	-2.060656	0.000002	0.000000
0	-3.206887	0.000022	0.000000
С	0.000000	-2.060672	0.000000
0	0.000002	-3.206903	0.000000
С	0.000000	0.000002	2.060654
0	0.000002	0.000022	3.206885
С	0.000000	0.000002	-2.060654
0	0.000002	0.000022	-3.206885

[W(CO)₅(OMe₂)]

Optimised structure of [W(CO)₆] in the gas phase

Н	-0.677255	-1.282021	2.119333
Н	0.964068	-1.128100	2.828536
С	0.391755	1.176305	1.895281
Н	0.732339	2.025688	1.305323
Н	0.964068	1.128098	2.828538
Н	-0.677255	1.282020	2.119334

References

- 1 1. M. F. Guns, E. G. Claeys and G. P. Van Der Kelen, *Journal of Molecular Structure*, 1979, 54, 101-109.
- 2 D. A. Edwards and J. Marshalsea, J. Organomet. Chem, 1975, 96, C50-C52.
- 3 R. J. Angleici, G. Facchin and M. M. Singh, Synth. React. Inorg. Met. Org. Chem, 1990, 20, 275.
- 4 Spartan 20[®] (2020) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A.
- 5 J. D. Chai and M. Head-Gordon, *J Chem Phys.*, 2008, **128**, 084106.
- 6 J. D. Chai and M. Head-Gordon, *Phys Chem Chem Phys*, 2008, **10**, 6615-6620.
- 7 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
- 8 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
- 9 W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, **82**, 284-298.
- 10 W. J. Hehre, R. Ditchfeld and J. A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257–2261.

Cartesian coordinates of optimised [W(CO)₅(OMe₂)]

Atom	х	Y	Z
W	-0.155744	0.000002	-1.108709
С	-0.793329	-0.000007	-2.979051
0	-1.170629	-0.000010	-4.073487
С	1.801128	0.000004	-1.739658
0	2.887040	0.000005	-2.114183
С	-2.086037	0.000001	-0.425154
0	-3.176044	-0.000000	-0.055193
С	-0.175110	2.046512	-1.184047
0	-0.202547	3.193268	-1.280630
С	-0.175115	-2.046508	-1.184049
0	-0.202554	-3.193264	-1.280632
0	0.627127	0.000000	1.127846
С	0.391755	-1.176305	1.895279
Н	0.732339	-2.025689	1.305321

CRUDE ¹H NMR (400 MHz, CDCl₃, 298 K) for [W(CO)₅(PPh₃)].

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, 51, 1-3 | 7

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

8 | Dalton Trans., 2022, 51, 1-3

This journal is © The Royal Society of Chemistry 2022

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, 51, 1-3 | 9

Dalton Transactions

10 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, 51, 1-3 | 11

Dalton Transactions

12 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, 51, 1-3 | 13

14 | Dalton Trans., 2022, 51, 1-3

This journal is © The Royal Society of Chemistry 2022

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, 51, 1-3 | 15

```
Dalton Transactions
```


IR (THF) for $[W(CO)_5(PPh_3)]$.

16 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, **51**, 1-3 | **17**

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) for [W(CO)₅(PPh₃)].

This journal is © The Royal Society of Chemistry 2022

18 | Dalton Trans., 2022, **51**, 1-3

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

¹³C{¹H} NMR (150 MHz, CDCl₃, 298 K) for [W(CO)₅(PPh₃)].

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, 51, 1-3 | 19

Please do not adjust margins

Dalton Transactions

IR (THF) for [Mo(CO)₅(PPh₃)].

20 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, **51**, 1-3 | **21**

22 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

¹³C{¹H} NMR (150 MHz, CDCl₃, 298 K) for [Mo(CO)₅(PPh₃)].

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, **51**, 1-3 | **23**

Dalton Transactions

IR (THF) for [Cr(CO)₅(PPh₃)].

24 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

¹H NMR (400 MHz, CDCl₃, 298 K) for [Cr(CO)₅(PPh₃)].

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, **51**, 1-3 | **25**

Dalton Transactions

³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) for [Cr(CO)₅(PPh₃)].

26 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

¹³C{¹H} NMR (150 MHz, CDCl₃, 298 K) for [Cr(CO)₅(PPh₃)].

Dalton Trans., 2022, 51, 1-3 | 27

Please do not adjust margins

IR (THF) for [Mn(Cp')(CO)₂(PPh₃)].

28 | Dalton Trans., 2022, **51**, 1-3

¹H NMR (400 MHz, CDCl₃, 298 K) for [Mn(Cp')(CO)₂(PPh₃)].

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, 51, 1-3 | 29

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

30 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

Dalton Transactions

¹³C{¹H} NMR (150 MHz, CDCl₃, 298 K) for [Mn(Cp')(CO)₂(PPh₃)].

Dalton Transactions

COSY NMR (600 MHz, CDCl₃, 298 K) for [Mn(Cp')(CO)₂(PPh₃)].

32 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

HSQC NMR (600, 150 MHz, CDCl₃, 298 K) for [Mn(Cp')(CO)₂(PPh₃)].

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

HMBC NMR (600, 150 MHz, CDCl₃, 298 K) for [Mn(Cp')(CO)₂(PPh₃)].

34 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION

High Resolution ESI-MS (+ve ion) for $[Mn(Cp')(CO)_2(PPh_3)]$.

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, **51**, 1-3 | **35**

36 | Dalton Trans., 2022, **51**, 1-3

IR (THF) for [Re(Cp*)(CO)₂(PPh₃)].

Please do not adjust margins

¹H NMR (CDCl₃, 700 MHz) for [Re(Cp*)(CO)₂(PPh₃)].

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, 51, 1-3 | 37

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

38 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, 51, 1-3 | 39

 $COSY (CDCl_3)$ for $[Re(Cp^*)(CO)_2(PPh_3)]$.

40 | Dalton Trans., 2022, **51**, 1-3

This journal is © The Royal Society of Chemistry 2022

HSQC (CDCl₃) for $[Re(Cp^*)(CO)_2(PPh_3)]$.

HMBC (CDCl₃) for $[Re(Cp^*)(CO)_2(PPh_3)]$.

42 | Dalton Trans., 2022, **51**, 1-3

ELECTRONIC SUPPORTING INFORMATION

High Resolution ESI-MS (+ve ion) for $[Re(Cp^*)(CO)_2(PPh_3)]$.

This journal is © The Royal Society of Chemistry 2022

Dalton Trans., 2022, **51**, 1-3 | **43**