Two-step thermotropic phase transition and dielectric relaxation in 1D supramolecular lead iodide perovskite [NH₄@18-crown ether]PbI₃

Yu-Xin Xie^a Guo-Jun Yuan^{*a} Ji-Bin Miao^a Ye-Ting Luan^a Li Li^a Hong Chen^a Xiao-

Ming Ren*b

^a Key Laboratory of Advanced Functional Materials of Nanjing, Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China

^b State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and molecular of Engineering, Nanjing Tech University, Nanjing 211816,
P. R. China

Tel.: +86 25 58139476 Email: <u>ahchljygj@163.com</u> (GJY); <u>xmren@njtech.edu.cn</u> (XMR)

Contents

Fig. S1: Comparison of simulated and experimental Powder X-ray diffraction profiles for **1**.

Fig. S2: TG plot for 1 in the temperature range of 303–1068 K.

Fig S3: (a) Solid state UV-visible spectrum at ambient condition (Inset: photo of crystal 1) and (b) Tauc plot obtained by the Kubelka-Munk function transformation for 1, and the optical bandgap is estimated to be 2.57 eV.

Fig. S4: Straight face-sharing $\{PbI_3\}_{\infty}$ chain linked to $[NH_4(18\text{-crown-6})]^+$ through charge-assisted H...I for 1 at 293 K.

Fig. S5: (a, b and c) Straight face-sharing $\{PbI_3\}_{\infty}$ chain linked to $[NH_4(18\text{-crown-6})]^+$ through charge-assisted H...I; (d) Packing diagram viewed along the b-axes for 1 at 363 K.

Fig. S6: (a, b and c) Straight face-sharing $\{PbI_3\}_{\infty}$ chain linked to $[NH_4(18\text{-crown-6})]^+$ through charge-assisted H...I; (d) Packing diagram viewed along the b-axes for 1 at 403 K.

Fig. S7: The shortest N...I distances in 1 between 100 and 403 K.

 Table S1: Crystal data and structure refinements for 1 at 100, 150, 200, 273, 293, 323,

 363 and 403 K

Table S2: Distortion parameters for each PbI₆ octahedron at the selected temperatures

Table S3: Selected bond lengths / Å for 1 at HTP at 100 K

Table S4: Selected bond lengths / Å for 1 at LTP at 150 K

Table S5: Selected bond lengths / Å for 1 at LTP at 200 K

Table S6: Selected bond lengths / Å for 1 at LTP at 273 K

Table S7: Selected bond lengths / Å for 1 at LTP at 293 K

Table S8: Selected bond lengths / Å for 1 at LTP at 323 K

Table S9: Selected bond lengths / Å for 1 at LTP at 363 K

Table S10: Selected bond lengths / Å for 1 at LTP at 403 K

Table S11: Selected bond Angle / ° for 1 at LTP at 100 K

Table S12: Selected bond Angle / ° for 1 at LTP at 150 K

Table S13: Selected bond Angle / ° for 1 at LTP at 200 K

- Table S14: Selected bond Angle / $^{\circ}$ for 1 at LTP at 273 K
- Table S15: Selected bond Angle / $^{\circ}$ for 1 at LTP at 293 K
- Table S16: Selected bond Angle / ° for 1 at LTP at 323 K
- Table S17: Selected bond Angle / ° for 1 at LTP at 363 K
- Table S18: Selected bond Angle / ° for 1 at LTP at 403 K
- Table S19: The parameters of U_{eq} in 1 at 100, 150, 200, 273, 293, 323, 363 and 403 K

Fig. S1: Comparison of simulated and experimental Powder X-ray diffraction profiles for **1**.

Fig. S2: TG plot for 1 in the temperature range of 303-1068 K.

Fig S3: (a) Solid state UV-visible spectrum at ambient condition (Inset: photo of crystal 1) and (b) Tauc plot obtained by the Kubelka-Munk function transformation for 1, and the optical bandgap is estimated to be 2.57 eV.

Fig. S4: Straight face-sharing $\{PbI_3\}_{\infty}$ chain linked to $[NH_4(18\text{-crown-6})]^+$ through charge-assisted H...I for 1 at 293 K.

Fig. S5: (a, b and c) Straight face-sharing $\{PbI_3\}_{\infty}$ chain linked to $[NH_4(18\text{-crown-6})]^+$ through charge-assisted H...I; (d) Packing diagram viewed along the b-axes for 1 at 363 K.

Fig. S6: (a, b and c) Straight face-sharing $\{PbI_3\}_{\infty}$ chain linked to $[NH_4(18\text{-crown-6})]^+$ through charge-assisted H...I; (d) Packing diagram viewed along the b-axes for 1 at 403 K.

Fig. S7: The shortest N...I distances in **1** between 100 and 403 K.

Κ					
Temp./K	100	150	200	273	323
SG	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$
CCDC no.	2111959	2111960	2111962	2111963	2111965
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
a (Å)	15.9602(7)	15.9485(6)	15.9465(6)	15.9434(6)	15.9339(7)
b (Å)	8.6135(3)	8.6219(3)	8.6266(3)	8.6315(3)	8.5831(3)
c (Å)	16.5827(7)	16.6746(7)	16.7569(7)	16.9273(7)	17.2046(8)
α (°)	90	90	90	90	90
β (°)	98.3610(10)	98.1810(10)	97.9190(10)	97.4200(10)	96.483(2)
γ (°)	90	90	90	90	90
$V(Å^3)/Z$	2255.45(16)/4	2269.53(15)/4	2283.17(15)/4	2309.95(15)/4	2337.89(17)/4
ρ (g·cm ⁻¹)	2.563	2.547	2.532	2.502	2.472
F(000)	1584	1584	1584	1584	1584
Abs. coeff. (mm ⁻¹)	11.609	11.537	11.468	11.335	11.200
θ Ranges/°	2.58-24.999	2.692-25.01	2.454-25.004	2.427-25.002	2.38-25.01
Index ranges	$-18 \le h \le 17$	$-18 \le h \le 18$	$-18 \le h \le 18$	$-18 \le h \le 18$	$-17 \le h \le 18$
	$-9 \le k \le 10$				
	$-19 \le 1 \le 17$	$-19 \le 1 \le 18$	$-19 \le 1 \le 18$	$-20 \le 1 \le 18$	$-20 \le 1 \le 19$
R _{int}	0.0434	0.0419	0.0444	0.0443	0.0607
Indep. refl/	3913/	3958/	3982/	4022/	4086/
restr.	217/	217/	217/	217/	217/
/para.	209	209	209	209	209
Goodness of fit on F^2	1.123	1.108	1.125	1.099	1.042
R_1 , w R_2 [I>2 σ (I)]	0.0305	0.0280	0.0316	0.0322	0.0404
	0.0749	0.0686	0.0740	0.0707	0.1039
R ₁ , wR ₂ [all data]	0.0335	0.0320	0.0367	0.0408	0.0565
	0.0765	0.0707	0.0760	0.0739	0.1115
Residual (e·Å-3)	1.066/	1.141/	1.152/	1.021/	0.856/
	-2.519	-2.265	-1.628	-0.919	-0.945

Table S1: Crystal data and structure refinements for 1 at 100, 150, 200, 273 and 323

 $R_1 = \sum ||F_o| - |F_c|| / |F_o|, \ wR_2 = \left[\sum w (\sum F_o^2 - F_c^2)^2 / \sum w (F_o^2)^2\right]^{1/2}$

	100K	150K	200K	273K	293K	323K	363K	403K
d _m [Å]	3.2724	3.2746	3.2765	3.2792	3.2781	3.2738	3.2553	3.2474
$\Delta_{\rm oct} \times 10^{-1}$	3.258	3.195	3.137	2.966	2.731	2.269	0.551	0.145
3								
σ^2_{oct}	98.849	97.419	95.578	92.324	88.959	82.718	59.302	48.380

Table S2: Distortion parameters for each PbI₆ octahedron at the selected temperatures

Table S3: Selected bond lengths / Å for 1 at LTP at 100 K

Bond	Bond lengths	Bond	Bond lengths	Bond	Bond lengths
Pb(1)-I(1)	3.0626(6)	N(1)-I(1)	8.1594(65)	N(1)-O(1)	2.9206(82)
Pb(1)-I(1)#1	3.5176(6)	N(1)-I(1)#1	10.6847(68)	N(1)-O(2)	2.9878(86)
Pb(1)-I(2)	3.2855(5)	N(1)-I(2)	7.0775(70)	N(1)-O(3)	2.9204(81)
Pb(1)-I(2)#2	3.2117(5)	N(1)-I(2)#2	11.2312(66)	N(1)-O(4)	3.0753(79)
Pb(1)-I(3)	3.0534(6)	N(1)-I(3)	7.3661(65)	N(1)-O(5)	2.814(8)
Pb(1)-I(3)#3	3.5035(6)	N(1)-I(3)#3	10.9356(68)	N(1)-O(6)	3.1122(76)
Mean bond	3.2724	Mean bond	9.2424	Mean bond	

#1 = -x+1/2, y-1/2, -z+1/2

#2 = -x+1/2, y-1/2, -z+1/2

#3 = -x+1/2, y+1/2, -z+1/2

Table S4: Selected bond lengths / Å for 1 at LTP at 150 K

Bond	Bond lengths	Bond	Bond lengths	Bond	Bond lengths
Pb(1)-I(1)	3.0670(5)	N(1)-I(1)	8.1378(49)	N(1)-O(1)	2.9258(69)
Pb(1)-I(1)#1	3.5251 (5)	N(1)-I(1)#1	10.6994(52)	N(1)-O(2)	2.9879(73)
Pb(1)-I(2)	3.2805(5)	N(1)-I(2)	7.0941(52)	N(1)-O(3)	2.9242(68)
Pb(1)-I(2)#2	3.2206(5)	N(1)-I(2)#2	11.2246(50)	N(1)-O(4)	3.0715 (67)
Pb(1)-I(3)	3.0573(6)	N(1)-I(3)	7.3675(51)	N(1)-O(5)	2.8147(68)
Pb(1)-I(3)#3	3.4972(6)	N(1)-I(3)#3	10.9394(52)	N(1)-O(6)	3.1091(65)
Mean bond	3.2746	Mean bond	9.2438		

Symmetry transformations used to generate equivalent atoms:

#1 = -x+1/2, y-1/2, -z+1/2

#2 = -x+1/2, y-1/2, -z+1/2

Bond	Bond lengths	Bond	Bond lengths	Bond	Bond lengths
Pb(1)-I(1)	3.0686(6)	N(1)-I(1)	8.1220(65)	N(1)-O(1)	2.9378(82)
Pb(1)-I(1)#1	3.5331(6)	N(1)-I(1)#1	10.7110(68)	N(1)-O(2)	2.9902(86)
Pb(1)-I(2)	3.2771(6)	N(1)-I(2)	7.0982(70)	N(1)-O(3)	2.9164(81)
Pb(1)-I(2)#2	3.2311(6)	N(1)-I(2)#2	11.2275(66)	N(1)-O(4)	3.0483 (80)
Pb(1)-I(3)	3.0612(6)	N(1)-I(3)	7.3773(65)	N(1)-O(5)	2.8079(80)
Pb(1)-I(3)#3	3.4876(6)	N(1)-I(3)#3	10.9373(68)	N(1)-O(6)	3.1000(76)
Mean bond	3.2765	Mean bond	9.2456		

Table S5: Selected bond lengths / Å for 1 at LTP at 200 K

#1 = -x+1/2, y-1/2, -z+1/2

#2 = -x+1/2, y-1/2, -z+1/2

#3 = -x+1/2, y+1/2, -z+1/2

Table S6: Selected bond lengths / Å for 1 at LTP at 273 K

Bond	Bond lengths	Bond	Bond lengths	Bond	Bond lengths
Pb(1)-I(1)	3.0752(6)	N(1)-I(1)	8.0891(65)	N(1)-O(1)	2.9289(79)
Pb(1)-I(1)#1	3.5426(6)	N(1)-I(1)#1	10.7178(67)	N(1)-O(2)	2.9795 (97)
Pb(1)-I(2)	3.2662(6)	N(1)-I(2)	7.1098(70)	N(1)-O(3)	2.9226(84)
Pb(1)-I(2)#2	3.2510(6)	N(1)-I(2)#2	11.2173(64)	N(1)-O(4)	3.0326 (74)
Pb(1)-I(3)	3.0710(6)	N(1)-I(3)	7.3758(63)	N(1)-O(5)	2.8082(79)
Pb(1)-I(3)#3	3.4692(6)	N(1)-I(3)#3	10.9358(68)	N(1)-O(6)	3.0820(82)
Mean bond	3.2792	Mean bond	9.2409		

Symmetry transformations used to generate equivalent atoms:

#1 = -x+1/2, y-1/2, -z+1/2 #2 = -x+1/2, y-1/2, -z+1/2 #3 = -x+1/2, y+1/2, -z+1/2

Bond	Bond lengths	Bond	Bond lengths	Bond	Bond lengths
Pb(1)-I(1)	3.0825(6)	N(1)-I(1)	8.0649(65)	N(1)-O(1)	2.9247(84)
Pb(1)-I(1)#1	3.5391(6)	N(1)-I(1)#1	10.7023(67)	N(1)-O(2)	2.9662(97)
Pb(1)-I(2)	3.2530(6)	N(1)-I(2)	7.107(7)	N(1)-O(3)	2.9281(86)
Pb(1)-I(2)#2	3.2637(6)	N(1)-I(2)#2	11.2012(64)	N(1)-O(4)	3.0312(74)
Pb(1)-I(3)	3.0800(6)	N(1)-I(3)	7.3648(63)	N(1)-O(5)	2.8099(89)
Pb(1)-I(3)#3	3.4503(6)	N(1)-I(3)#3	10.9263(68)	N(1)-O(6)	3.0617(85)
Mean bond	3.2781	Mean bond	9.2278		

Table S7: Selected bond lengths / Å for 1 at LTP at 293 K

#1 = -x+1/2, y-1/2, -z+1/2

#2 = -x+1/2, y-1/2, -z+1/2

#3 = -x+1/2, y+1/2, -z+1/2

Table S8: Selected bond lengths / Å for 1 at LTP at 323 K

Bond	Bond lengths	Bond	Bond lengths	Bond	Bond lengths
Pb(1)-I(1)	3.0959(7)	N(1)-I(1)	8.0498(66)	N(1)-O(1)	2.9249(106)
Pb(1)-I(1)#1	3.5198(7)	N(1)-I(1)#1	10.6962(75)	N(1)-O(2)	2.9709(115)
Pb(1)-I(2)	3.2319(6)	N(1)-I(2)	7.1280(78)	N(1)-O(3)	2.9492 (109)
Pb(1)-I(2)#2	3.2784(6)	N(1)-I(2)#2	11.1975(67)	N(1)-O(4)	3.0268(92)
Pb(1)-I(3)	3.0979(8)	N(1)-I(3)	7.3643(68)	N(1)-O(5)	2.8099(93)
Pb(1)-I(3)#3	3.4188(8)	N(1)-I(3)#3	10.9414(73)	N(1)-O(6)	3.0424(101)
Mean bond	3.2738	Mean bond	9.2295		

Symmetry transformations used to generate equivalent atoms:

#1 = -x+1/2, y-1/2, -z+1/2 #2 = -x+1/2, y-1/2, -z+1/2 #3 = -x+1/2, y+1/2, -z+1/2

Bond	Bond lengths	Bond	Bond lengths	Bond	Bond lengths
Pb(1)-I(1)	3.1903(8)	N(1)-I(1)	3.6550(85)	N(1)-O(1)	2.9936(176)
Pb(1)-I(1)#1	3.3860(8)	N(1)-I(1)#1	8.5892(88)	N(1)-O(1)A	2.9037(201)
Pb(1)-I(2)	3.1769(8)	N(1)-I(2)	5.1698(83)	N(1)-O(2)	3.0098(174)
Pb(1)-I(2)#2	3.2913(8)	N(1)-I(2)#2	7.7135(89)	N(1)-O(2)A	2.7584(178)
Pb(1)-I(3)	3.1890(7)	N(1)-I(3)	7.1849(86)	N(1)-O(3)	3.0581(158)
Pb(1)-I(3)#3	3.2988(7)	N(1)-I(3)#3	5.9078(86)	N(1)-O(3)A	2.9302(184)
				N(1)-O(4)	2.7932(163)
				N(1)-O(4)A	2.905(22)
				N(1)-O(5)	2.9493(173)
				N(1)-O(5)A	3.0778(196)
				N(1)-O(6)	2.8505(170)
				N(1)-O(6)A	2.9726(189)
Mean bond	3.2553	Mean bond	6.3700		

Table S9: Selected bond lengths / Å for 1 at LTP at 363 K

#1 = -x+3/2, y+1/2, -z+1/2

#2 = -x+3/2, y-1/2, -z+1/2

Bond	Bond lengths	Bond	Bond lengths	Bond	Bond lengths
Pb(1)-I(1)	3.2652(12)	N(1)-I(1)	3.6384(128)	N(1)-O(1)	2.8531(270)
Pb(1)-I(1)#1	3.2914(12)	N(1)-I(1)#1	10.0741(128)	N(1)-O(1)#5	2.8531(270)
Pb(1)-I(2)	3.1933(9)	N(1)-I(2)	7.4679(121)	N(1)-O(1)A	3.1810(434)
Pb(1)-I(2)#2	3.2706(9)	N(1)-I(2)#2	7.5434(123)	N(1)-O(2)	2.8568(243)
Pb(1)-I(2)#3	3.1933(9)	N(1)-I(2)#3	7.4679(121)	N(1)-O(2)#6	2.8568(243)
Pb(1)-I(2)#4	3.2706(9)	N(1)-I(2)#4	7.5434(123)	N(1)-O(2)A	3.0183(273)
				N(1)-O(2)A#7	3.0183(273)
				N(1)-O(3)	2.8740(263)
				N(1)-O(3)#8	2.8740(273)
				N(1)-O(3)A	3.1094(311)
				N(1)-O(3)A#9	3.1094(311)
				N(1)-O(4)A	2.9430(389)
Mean bond	3.2474	Mean bond	7.2892		

Table S10: Selected bond lengths / Å for 1 at LTP at 403 K

#1 = x-1/2, -y+3/2, -z+1/2

#2 = x+1/2, -y+3/2, -z+1/2

#3 = x, -y+3/2, z

#4 = x+1/2, y, -z+1/2

#5 = x, -y+3/2, z

#6 = x, -y+3/2, z

$$\#7 = x, -y+3/2, z$$

#8 = x, -y+3/2, z

#9 = x, -y+3/2, z

Bond	Angle/°	Bond	Angle/°
∠I(1)-Pb(1)-I(2)	84.286(14)	\angle I(2)-Pb(1)-I(3)	94.225(14)
$\angle I(1)$ -Pb(1)-I(3) #3	81.344(15)	$\angle I(3)$ #3-Pb(1)-I(1)#1	106.776(14)
$\angle I(1)$ -Pb(1)-I(2) #2	94.253(14)	$\angle I(3)$ #3-Pb(1)-I(2)#2	101.230(14)
$\angle I(1)$ -Pb(1)-I(3)	91.394(15)	$\angle I(1)$ #1-Pb(1)-I(2)#2	78.464(13)
$\angle I(2)$ -Pb(1)-I(3)#3	78.159(13)	$\angle I(1)$ #1-Pb(1)-I(3)	81.236(15)
$\angle I(2)$ -Pb(1)-I(1)#1	103.036(13)	$\angle I(2)$ #2-Pb(1)-I(3)	86.219(14)

Table S11: Selected bond Angle / $^{\circ}$ for **1** at LTP at 100 K

#1 = -x+1/2, y-1/2, -z+1/2 #2 = -x+1/2, y-1/2, -z+1/2 #3 = -x+1/2, y+1/2, -z+1/2

Table S12: Selected bond Angle / $^{\circ}$ for **1** at LTP at 150 K

Bond	Angle/°	Bond	Angle/°
$\angle I(1)$ -Pb(1)-I(2)	84.344(13)	$\angle I(2)$ -Pb(1)-I(3)	94.478(12)
$\angle I(1)$ -Pb(1)-I(3) #3	81.528(13)	$\angle I(3)$ #3-Pb(1)-I(1)#1	106.279(12)
$\angle I(1)$ -Pb(1)-I(2) #2	94.598(13)	∠I(3)#3-Pb(1)-I(2)#2	101.202(13)
$\angle I(1)$ -Pb(1)-I(3)	91.695(13)	∠I(1)#1-Pb(1)-I(2)#2	78.278(13)
$\angle I(2)$ -Pb(1)-I(3)#3	78.265(13)	$\angle I(1)$ #1-Pb(1)-I(3)	81.202(13)
∠I(2)-Pb(1)-I(1)#1	102.818(13)	$\angle I(2)$ #2-Pb(1)-I(3)	85.942(12)

Symmetry transformations used to generate equivalent atoms:

#1 = -x+1/2, y-1/2, -z+1/2

#2 = -x+1/2, y-1/2, -z+1/2

Bond	Angle/°	Bond	Angle/°
$\angle I(1)$ -Pb(1)-I(2)	84.453(15)	$\angle I(2)$ -Pb(1)-I(3)	94.675(14)
$\angle I(1)$ -Pb(1)-I(3) #3	81.734(15)	$\angle I(3)$ #3-Pb(1)-I(1)#1	105.767(14)
$\angle I(1)$ -Pb(1)-I(2) #2	94.951(15)	$\angle I(3)$ #3-Pb(1)-I(2)#2	101.096(14)
$\angle I(1)$ -Pb(1)-I(3)	92.066(16)	$\angle I(1)$ #1-Pb(1)-I(2)#2	78.093(15)
$\angle I(2)$ -Pb(1)-I(3)#3	78.464(14)	$\angle I(1)$ #1-Pb(1)-I(3)	81.088(15)
$\angle I(2)$ -Pb(1)-I(1)#1	102.539(15)	$\angle I(2)$ #2-Pb(1)-I(3)	85.710(14)

Table S13: Selected bond Angle / $^{\circ}$ for 1 at LTP at 200 K

#1 = -x+1/2, y-1/2, -z+1/2 #2 = -x+1/2, y-1/2, -z+1/2 #3 = -x+1/2, y+1/2, -z+1/2

Table S14: Selected bond Angle / $^{\circ}$ for **1** at LTP at 273 K

Bond	Angle/°	Bond	Angle/°
$\angle I(1)$ -Pb(1)-I(2)	84.643(16)	$\angle I(2)$ -Pb(1)-I(3)	95.000(15)
$\angle I(1)$ -Pb(1)-I(3) #3	82.086(15)	∠I(3)#3-Pb(1)-I(1)#1	104.835(14)
$\angle I(1)$ -Pb(1)-I(2) #2	95.563(16)	∠I(3)#3-Pb(1)-I(2)#2	100.910(14)
$\angle I(1)$ -Pb(1)-I(3)	92.703(17)	∠I(1)#1-Pb(1)-I(2)#2	77.796(15)
$\angle I(2)$ -Pb(1)-I(3)#3	78.888(14)	$\angle I(1)$ #1-Pb(1)-I(3)	80.940(15)
∠I(2)-Pb(1)-I(1)#1	102.021(15)	$\angle I(2)$ #2-Pb(1)-I(3)	85.217(15)

Symmetry transformations used to generate equivalent atoms:

#1 = -x+1/2, y-1/2, -z+1/2

#2 = -x+1/2, y-1/2, -z+1/2

Bond	Angle/°	Bond	Angle/°
\angle I(1)-Pb(1)-I(2)	84.803(16)	$\angle I(2)$ -Pb(1)-I(3)	95.145(15)
$\angle I(1)$ -Pb(1)-I(3) #3	82.337(16)	∠I(3)#3-Pb(1)-I(1)#1	104.121(15)
$\angle I(1)$ -Pb(1)-I(2) #2	95.931(17)	∠I(3)#3-Pb(1)-I(2)#2	100.742(14)
$\angle I(1)$ -Pb(1)-I(3)	93.116(18)	$\angle I(1)$ #1-Pb(1)-I(2)#2	77.731(15)
$\angle I(2)$ -Pb(1)-I(3)#3	79.328(14)	$\angle I(1)$ #1-Pb(1)-I(3)	80.917(16)
$\angle I(2)$ -Pb(1)-I(1)#1	101.536(15)	$\angle I(2)$ #2-Pb(1)-I(3)	84.836(15)

Table S15: Selected bond Angle / $^{\circ}$ for 1 at LTP at 293 K

#1 = -x+1/2, y-1/2, -z+1/2 #2 = -x+1/2, y-1/2, -z+1/2 #3 = -x+1/2, y+1/2, -z+1/2

Table S16: Selected bond Angle / ° for 1 at LTP at 323 K

Bond	Angle/°	Bond	Angle/°
$\angle I(1)$ -Pb(1)-I(2)	84.917(19)	$\angle I(2)$ -Pb(1)-I(3)	95.157(17)
$\angle I(1)$ -Pb(1)-I(3) #3	82.717(18)	$\angle I(3)$ #3-Pb(1)-I(1)#1	102.948(17)
$\angle I(1)$ -Pb(1)-I(2) #2	96.533(19)	∠I(3)#3-Pb(1)-I(2)#2	100.379(17)
$\angle I(1)$ -Pb(1)-I(3)	93.67(2)	∠I(1)#1-Pb(1)-I(2)#2	77.791(16)
$\angle I(2)$ -Pb(1)-I(3)#3	80.160(17)	$\angle I(1)$ #1-Pb(1)-I(3)	81.041(18)
∠I(2)-Pb(1)-I(1)#1	100.733(16)	$\angle I(2)$ #2-Pb(1)-I(3)	84.383(17)

Symmetry transformations used to generate equivalent atoms:

#1 = -x+1/2, y-1/2, -z+1/2

#2 = -x+1/2, y-1/2, -z+1/2

Bond	Angle/°	Bond	Angle/°
$\angle I(1)$ -Pb(1)-I(2)	95.93(2)	$\angle I(2)$ -Pb(1)-I(3)	95.22(2)
$\angle I(1)$ -Pb(1)-I(3) #3	98.11(2)	$\angle I(3)$ #3-Pb(1)-I(1)#1	79.89(2)
$\angle I(1)$ -Pb(1)-I(2) #2	83.52(2)	∠I(3)#3-Pb(1)-I(2)#2	98.46(2)
$\angle I(1)$ -Pb(1)-I(3)	84.58(2)	$\angle I(1)$ #1-Pb(1)-I(2)#2	98.39(2)
$\angle I(2)$ -Pb(1)-I(3)#3	83.20(2)	$\angle I(1)$ #1-Pb(1)-I(3)	97.39(2)
$\angle I(2)$ -Pb(1)-I(1)#1	82.21(2)	$\angle I(2)$ #2-Pb(1)-I(3)	83.14(2)

Table S17: Selected bond Angle / $^{\circ}$ for 1 at LTP at 363 K

#1 = -x+3/2, y+1/2, -z+1/2 #2 = -x+3/2, y-1/2, -z+1/2 #3 = -x+3/2, y+1/2, -z+1/2

Table S18: Selected bond Angle / ° for 1 at LTP at 403 K

Bond	Angle/°	Bond	Angle/°
$\angle I(1)$ -Pb(1)-I(2)	95.57(3)	$\angle I(2)$ -Pb(1)-I(2)#4	95.64(2)
∠I(1)-Pb(1)-I(2)#2	82.61(2)	$\angle I(2)$ #1-Pb(1)-I(2)#2	98.442(14)
$\angle I(1)$ -Pb(1)-I(2)#3	95.57(3)	$\angle I(2)$ #1-Pb(1)-I(2)#3	83.390(15)
∠I(1)-Pb(1)-I(2)#4	82.61(2)	$\angle I(2)$ #1-Pb(1)-I(2)#4	98.442(14)
$\angle I(2)$ -Pb(1)-I(2)#1	83.390(15)	$\angle I(2)$ #2-Pb(1)-I(2)#3	95.64(2)
∠I(2)-Pb(1)-I(2)#3	85.57(3)	$\angle I(2)$ #2-Pb(1)-I(2)#4	83.09(3)

Symmetry transformations used to generate equivalent atoms:

#1 = x-1/2, -y+3/2, -z+1/2

#2 = x+1/2, -y+3/2, -z+1/2

#3 = x, -y+3/2, z

#4 = x+1/2, y, -z+1/2

Non-H atom	100K	150K	200K	273K	293K	323K	363K	403K
Pb1	0.0113(1)	0.0149(1)	0.0208(1)	0.0311(1)	0.0362(1)	0.0438(2)	0.0561(2)	0.0675(3)
N1	0.015(1)	0.019(1)	0.024(1)	0.038(2)	0.043(2)	0.053(2)	0.077(2)	0.089(4)
I1	0.0163(1)	0.0227(1)	0.0315(2)	0.0467(2)	0.054(2)	0.064(2)	0.0807(3)	0.0984(4)
I2	0.0141(1)	0.0193(1)	0.027(1)	0.0403(2)	0.0466(2)	0.0557(2)	0.0821(3)	0.0893(3)
I3	0.0156(1)	0.0215(1)	0.0298(2)	0.045(2)	0.0531(2)	0.0645(2)	0.0696(2)	
01	0.015(1)	0.02(1)	0.030(1)	0.049(1)	0.061(2)	0.086(2)	0.091(4)	0.147(6)
OlA							0.094(5)	0.172(9)
02	0.016(1)	0.022(1)	0.032(1)	0.052(1)	0.067(2)	0.091(2)	0.095(5)	0.149(6)
O2A							0.092(5)	0.175(6)
O3	0.016(1)	0.022(1)	0.031(1)	0.051(1)	0.066(2)	0.093(2)	0.089(4)	0.135(6)
O3A							0.100(5)	0.175(7)
O4	0.014(1)	0.0198(9)	0.029(1)	0.048(1)	0.060(2)	0.083(2)	0.097(4)	
O4A							0.116(6)	0.162(9)
05	0.016(1)	0.0217(9)	0.03(1)	0.049(1)	0.061(2)	0.089(2)	0.103(5)	
O5A							0.100(5)	
O6	0.016(1)	0.0210(9)	0.0309(12)	0.052(1)	0.066(2)	0.092(2)	0.093(4)	
O6A							0.082(5)	
C1	0.019(2)	0.024(1)	0.0346(18)	0.054(2)	0.068(2)	0.088(3)	0.107(6)	0.151(8)
C1A							0.097(6)	0.171(8)
C2	0.02(2)	0.026(1)	0.038(2)	0.056(2)	0.071(2)	0.084(3)	0.098(6)	0.158(7)
C2A							0.096(6)	0.164(7)
C3	0.018(2)	0.024(1)	0.037(2)	0.059(2)	0.075(2)	0.105(3)	0.103(6)	0.154(7)
C3A							0.103(7)	0.178(7)
C4	0.019(2)	0.024(1)	0.035(2)	0.057(2)	0.071(2)	0.097(3)	0.104(6)	0.145(7)
C4A							0.110(7)	0.177(8)
C5	0.018(2)	0.024(1)	0.034(2)	0.057(2)	0.072(2)	0.096(3)	0.099(6)	0.143(7)
C5A							0.108(7)	0.26(3)
C6	0.018(2)	0.024(1)	0.034(2)	0.054(2)	0.067(2)	0.082(3)	0.091(6)	0.146(8)
C6A							0.108(6)	0.166(9)
C7	0.017(2)	0.024(1)	0.032(2)	0.052(2)	0.070(2)	0.093(3)	0.106(6)	
C7A							0.105(6)	
C8	0.017(2)	0.022(1)	0.033(2)	0.052(2)	0.066(2)	0.088(3)	0.107(6)	
C8A							0.112(6)	
C9	0.019(2)	0.025(1)	0.036(2)	0.060(2)	0.074(2)	0.098(3)	0.117(6)	
C9A							0.093(7)	
C10	0.019(2)	0.026(1)	0.038(2)	0.061(2)	0.075(2)	0.094(3)	0.101(6)	
C10A							0.096(6)	
C11	0.016(2)	0.022(1)	0.033(2)	0.053(2)	0.070(2)	0.094(3)	0.100(6)	
C11A							0.094(7)	
C12	0.017(2)	0.024(1)	0.037(2)	0.057(2)	0.068(2)	0.084(3)	0.092(6)	
C12A							0.091(6)	

Table S19: The parameters U_{eq} of non-H atoms in **1** at 100, 150, 200, 273, 293, 323, 363 and 403 K