Supporting Information

A facile morphology tunable strategy of Zn-MOF derived hierarchically carbon materials with enhanced supercapacitive performance through solvent effect

Rui Miao[†], Chaohua Sun[†], Jipeng Li[†], Yanzhi Sun^{†,*}, Yongmei Chen[†], Junqing Pan[‡], Yang Tang[†], Pingyu Wan[†]

[†]National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, China

[‡]State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

*E-mail: sunyz@buct.edu.cn (Y. Sun);

Tel./Fax: 8610-64435452

Fig. S1 The GCD and CV curves of RTPC prepared in different solvents at different current densities.

Fig. S2 HK pore size distribution of the five samples

Fig. S3 (a, b): GCD curves at different current density of RTPC-50 and ZnO/C-50; (c, d): CV curves at different scanning rates of RTPC-50 and ZnO/C-50; (e) The comparation of specific capacitance at different current density of RTPC-50 and ZnO/C-50; (f) The comparation of CV curve at 100 mV s⁻¹ of RTPC-50 and ZnO/C-50.

Fig. S4 Comparison diagram of CV curves for 1st and 20000th cycle at the scanning speed of 200 mV s⁻¹.

Fig. S5 Nyquist plots after 1st and 200000th GCD cycles (Inset is the magnified image in high-frequency regions)

Technique	Model	Manufacturer	
Scanning Electron Microscope (SEM)	SUPRA 55 SAPPHIRE	Carl Zeiss AG	
Energy Dispersive Spectroscopy (EDS)	SUPRA 55 SAPPHIRE	Carl Zeiss AG	
Thermal Gravimetric Analysis (TGA)	STA 449 F3	NETZSCH-Gerätebau GmbH	
X-ray Diffraction (XRD)	XRD-6000	Shimadzu	
X-ray Photoelectron Spectra (XPS)	AXIS ULTRA DLD	Shimadzu	
Brunauer-Emmett- Teller (BET)	ASAP 2460	Micromeritics Instrument Corporation	

Table S1 The detailed information of characterization instruments

	BET Surface Area (cm ² g ⁻¹)	average pore diameter (nm)	t-Plot Micropore Area (cm ² g ⁻¹)	t-Plot micropore volume (cm ³ g ⁻¹)
RTPC-0	1597.4	1.8	1009.0	0.40
RTPC-25	1760.9	2.6	740.9	0.31
RTPC-50	1930.4	2.9	638/1	0.27
RTPC-75	1764.7	2.4	893.8	0.36
RTPC-100	2061.7	3.3	454.5	0.19

 Table S2 The specific surface area and pore structure of five samples

	Zn-BTC	ZnO/C	RTPC-50
C 1s (at.%)	66.76	90.13	92.57
O 1s (at.%)	19.76	9.72	7.43
Zn 2p (at.%)	13.48	0.15	0

Table S3 C 1s, Zn 2p and O 1s parameters of Zn-BTC, ZnO/C and RTPC-50