Supporting Information for

Self-assembly of a new class of rhenium(I)-based double stranded dinuclear monohelicates with their photophysical and electrochemical studies

Upasana Phukon,^a Bhaskaran Shankar^b and Malaichamy Sathiyendiran^{*a}

^aSchool of Chemistry, University of Hyderabad, Hyderabad-500 046, India ^bDepartment of Chemistry, Thiagarajar College of Engineering, Madurai-625 015, India

Contents

- **Figure S1.** ¹H NMR spectrum of L¹ in DMSO $-d_6$.
- **Figure S2.** ¹H–¹H COSY NMR spectrum of L¹ in DMSO– d_6 .
- Figure S3. ¹H–¹H NOESY NMR spectrum of L¹ in DMSO– d_{6} .
- **Figure S4.** ¹H NMR spectrum of L^2 in DMSO– d_6 .
- **Figure S5.** ¹H–¹H COSY NMR spectrum of L² in DMSO– d_6 .
- Figure S6. ESI mass spectrum of L¹ in positive ion mode.
- Figure S7. ESI mass spectrum of L² in positive ion mode.
- Figure S8. ATR-IR spectrum of 1.
- Figure S9. ATR-IR spectrum of 2.
- Figure S10. ATR-IR spectrum of 3.
- Figure S11. ATR-IR spectrum of 4.
- **Figure S12.** ¹H NMR spectrum of **1** in DMSO $-d_6$.
- Figure S13. ¹H NMR spectrum of 2 in DMSO $-d_6$.
- **Figure S14.** ¹H NMR spectrum of **3** in DMSO $-d_6$.
- Figure S15. ¹H NMR spectrum of 4 in DMSO $-d_6$.
- **Figure S16.** Partial ¹H NMR spectra of ligands and complexes **1** and **2** in DMSO $-d_6$.
- **Figure S17.** Partial ¹H NMR spectra of ligands and complexes **3** and **4** in DMSO $-d_6$.
- **Figure S18.** Partial variable temperature ¹H NMR spectrum of **1** in DMSO $-d_6$.
- Figure S19. Partial variable temperature ¹H NMR spectrum of 2 in DMSO $-d_6$.

Figure S20. Partial variable temperature ¹H NMR spectrum of 3 in DMSO–d₆.
Figure S21. Partial variable temperature ¹H NMR spectrum of 4 in DMSO–d₆.
Figure S22. ESI mass spectrum of 1 in positive ion mode.
Figure S23. ESI mass spectrum of 2 in positive ion mode.
Figure S24. ESI mass spectrum of 4 in positive ion mode.
Figure S25. ESI mass spectrum of 4 in positive ion mode.
Cartesian coordinates of the optimized structure of 1 (Helicate).
Cartesian coordinates of the optimized structure of 2 (Helicate).
Cartesian coordinates of the optimized structure of 2 (Helicate).
Cartesian coordinates of the optimized structure of 3 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).
Cartesian coordinates of the optimized structure of 4 (Helicate).

mesocates).

Table S2. Crystal data and structure refinement for 1.

Figure S26. Simulated absorption spectrum of **1** in DMSO with oscillator strength (f) values (shown as vertical bars, same color code).

Figure S27. Simulated absorption spectrum of **2** in DMSO with oscillator strength (f) values (shown as vertical bars, same color code).

Figure S28. Simulated absorption spectrum of **3** in DMSO with oscillator strength (f) values (shown as vertical bars, same color code).

Figure S29. Simulated absorption spectrum of **4** in DMSO with oscillator strength (f) values (shown as vertical bars, same color code).

Figure S30. . Frontier molecular orbitals involved in TDDFT/IEF-PCM transitions of 3.

Figure S31. Frontier molecular orbitals involved in TDDFT/IEF-PCM transition of 4.

Figure S32. Emission spectra of **1** (λ_{exc} = 270 nm), L¹ (λ_{exc} = 265 nm), and H₂-dhbq (λ_{exc} = 285 nm) in DMSO.

Figure S33. Emission spectra of **2** (λ_{exc} = 270 nm), L¹ (λ_{exc} = 265 nm), and H₂-pydc (λ_{exc} = 277 nm) in DMSO.

Figure S34. Emission spectra of **3** (λ_{exc} = 270 nm), L² (λ_{exc} = 265 nm), and H₂-dhbq (λ_{exc} = 285 nm) in DMSO.

Figure S35. Emission spectra of **4** (λ_{exc} = 270 nm), L² (λ_{exc} = 265 nm), and H₂-pydc (λ_{exc} = 277 nm) in DMSO.

Table S3. Major singlet excited state transitions for **3** from TDDFT/IEF-PCM calculations withDMSO as the solvent model.

Table S4. Major singlet excited state transitions for **4** from TDDFT/IEF-PCM calculations withDMSO as the solvent model.

Table S5. Free energies of activation calculated from the coalescence temperatures and the chemical shifts (¹H NMR, 500 MHz) of the signals of dhbq²⁻ protons in 1 and 3, pydc²⁻ protons in 2 and 4.

Figure S1. ¹H NMR spectrum of L¹ in DMSO– d_6 .

Figure S2. ¹H–¹H COSY NMR spectrum of L¹ in DMSO– d_6 .

89 1 ition Para 2021040 1.39 h spect Z119470 03 500.3713517 MH 10.0 F1 - Acqu TD SFO1 FIDRES SW FnMODE 256 500.3714 MHz 39.062500 Hz 9.993 ppm States-TPPI F2 - Pr SI SF WDW SSB LB GB PC ing pa 690000 QSINF MHz 0 Hz 0 F1 - Process SI MC2 St SF 500 WDW SSB LB 0 Hz GB 0 ssing para 1024 1024 States-TPPI 500.3690000 MHz QSINE 2

Figure S3. ¹H $^{-1}$ H NOESY NMR spectrum of L¹ in DMSO $-d_6$.

Figure S4. ¹H NMR spectrum of L^2 in DMSO– d_6 .

Current Data Parameters NAME UP 500 ascend EXPNO 197 PROCNO 1
F2 - Acquisition Parameters Date 20220322 Time 17.40 h INSTRUM spect PROBHD 212331 DBM 2023032 DBM Spect PROBHD 212331 DBM 2045 DSULVENT 2045 DSW 18 DSW 18 DSW 6.37029 Hz. PID F205 6.37029 Hz. PORES 6.37029 Hz. PORES 6.3000000 sec D1 2.0000000 sec D1 0.0000000 sec D1 0.0000000 sec D1 0.0000200 sec D1 0.0000200 sec D14 0.0000200 sec D15 0.0000200 sec D14 0.0000200 sec D14 14 NUC1 14 NUC1 14 PG 3.00 usec PLW1 12.000031 Wc PLW1 10.034 PUND
F1 - Acquisition parameters TD 128 SF01 500.372 MHz FIDRES 101.725258 Hz SW 13.011 ppm FnMODE QF
F2 - Processing parameters SI 1024 SF 500.3690000 MHz WDW QSINE SSB 0 LB 0 Hz GB 0 PC 1.00
F1 - Processing parameters SI 1024 MC2 QF SF 500.3690000 MHz WDW QSINE SSB 0 LB 0 Hz GB 0

Figure S5. $^{1}H-^{1}H$ COSY NMR spectrum of L² in DMSO- d_{6} .

Figure S6. ESI mass spectrum of L¹ in positive ion mode (simulated pattern in inset).

Figure S7. ESI mass spectrum of L² in positive ion mode (simulated pattern in inset).

Figure S8. ATR-IR spectrum of 1.

Figure S9. ATR-IR spectrum of 2.

Figure S10. ATR-IR spectrum of 3.

Figure S11. ATR–IR spectrum of 4.

Figure S12. ¹H NMR spectrum of **1** in DMSO– d_6 (* = Mesitylene).

Figure S13. ¹H NMR spectrum of **2** in DMSO– d_6 (* = Mesitylene).

Figure S14. ¹H NMR spectrum of **3** in DMSO– d_6 (* = Mesitylene).

Figure S15. ¹H NMR spectrum of **4** in DMSO– d_6 (* = Mesitylene).

Figure S16. Partial ¹H NMR spectra of ligands and complexes **1** and **2** in DMSO $-d_6$.

Figure S17. Partial ¹H NMR spectra of ligands and complexes **3** and **4** in DMSO $-d_6$.

Figure S18. Partial variable temperature ¹H NMR spectrum of 1 in DMSO– d_6 .

Figure S19. Partial variable temperature ¹H NMR spectrum of **2** in DMSO– d_6 .

Figure S20. Partial variable temperature ¹H NMR spectrum of **3** in DMSO $-d_6$.

Figure S21. Partial variable temperature ¹H NMR spectrum of **4** in DMSO $-d_6$.

Figure S22. ESI mass spectrum of 1 in positive ion mode (simulated pattern in inset).

Figure S23. ESI mass spectrum of 2 in positive ion mode (simulated pattern in inset).

Figure S24. ESI mass spectrum of 3 in positive ion mode (simulated pattern in inset).

Figure S25. ESI mass spectrum of 4 in positive ion mode (simulated pattern in inset).

Ato	m X	Y	Z
75	4.049997000	-0.948333000	-0.652499000
75	-4.050004000	-0.948346000	0.652482000
8	2.271848000	0.304894000	-0.590022000
8	-2.340132000	-2.287151000	0.274182000
8	2.340174000	-2.287125000	-0.274047000
8	-2.271880000	0.304876000	0.589985000
8	6.254712000	-3.083690000	-0.333499000
7	3.923735000	-0.649694000	1.601805000
7	-4.113606000	0.443108000	-2.392017000
8	-6.143080000	1.225843000	1.259262000
7	-3.923523000	-0.649543000	-1.601841000
7	4.113764000	0.443028000	2.391923000
8	-3.881748000	-1.520182000	3.684389000
8	-6.254742000	-3.083638000	0.333204000
6	1.167710000	-0.237109000	-0.272337000
6	-1.167717000	-0.237113000	0.272353000
6	-1.189468000	-1.755916000	0.171036000
6	5.452627000	-2.266305000	-0.471477000
6	0.000033000	-2.465037000	0.000170000
1	0.000044000	-3.548419000	0.000261000
6	-1.164076000	4.267928000	-0.509608000
8	3.881158000	-1.519734000	-3.684464000
6	1.189506000	-1.755912000	-0.170869000
8	6.143118000	1.225781000	-1.259376000
6	-0.000017000	0.468549000	-0.000027000
1	-0.000019000	1.548996000	-0.000049000
6	-4.447206000	1.782489000	-1.891500000
1	-5.189342000	1.672644000	-1.105195000
1	-4.951830000	2.277523000	-2.725706000
6	-3.277465000	2.622117000	-1.410916000
6	3.277477000	2.622027000	1.410928000
6	1.063579000	3.557625000	1.712369000
1	0.152867000	3.623263000	2.300203000
6	1.164025000	4.267918000	0.509886000
6	-2.349479000	4.155347000	0.218681000
1	-2.461356000	4.698966000	1.152288000
6	-5.374625000	0.392201000	1.017475000
6	2.103985000	2.750936000	2.158990000
1	1.985174000	2.204133000	3.089572000

6	-5.452648000	-2.266278000	0.471266000
6	5.374614000	0.392195000	-1.017545000
6	-1.063554000	3.557745000	-1.712157000
1	-0.152809000	3.623450000	-2.299934000
6	3.951256000	-1.307070000	-2.555650000
6	-3.951565000	-1.307315000	2.555597000
6	4.447290000	1.782381000	1.891304000
1	5.189216000	1.672460000	1.104820000
1	4.952144000	2.277437000	2.725360000
6	3.390482000	3.340726000	0.221903000
1	4.289857000	3.254047000	-0.379294000
6	2.349394000	4.155414000	-0.218483000
1	2.461195000	4.699109000	-1.152056000
6	-3.945274000	0.116240000	-3.694719000
1	-4.066726000	0.859823000	-4.466697000
6	-3.632370000	-1.656404000	-2.435281000
1	-3.434501000	-2.636740000	-2.031975000
6	-3.390538000	3.340691000	-0.221841000
1	-4.289943000	3.253954000	0.379296000
6	-2.103931000	2.751102000	-2.158905000
1	-1.985092000	2.204389000	-3.089535000
6	-3.632321000	-1.225630000	-3.765799000
1	-3.438790000	-1.810419000	-4.650172000
6	-0.000047000	5.104752000	0.000201000
1	0.355830000	5.761230000	-0.799821000
1	-0.355963000	5.761093000	0.800318000
6	3.632636000	-1.656512000	2.435307000
1	3.434806000	-2.636883000	2.032064000
6	3.632543000	-1.225653000	3.765801000
1	3.439068000	-1.810409000	4.650207000
6	3.945437000	0.116229000	3.694639000
1	4.066857000	0.859858000	4.466580000

Atom	n X	Y	Z
75	-4.030786000	-1.386328000	-0.235679000
8	-2.271862000	-0.412924000	-1.110486000
8	-2.268982000	-2.189512000	0.802403000
8	-3.972951000	-3.648497000	-2.337216000
8	-6.181875000	0.009192000	-1.939723000
8	-6.176793000	-2.915480000	1.367472000
6	0.079426000	-0.328801000	-1.256626000
6	-1.123918000	-0.785430000	-0.718185000
6	-1.119827000	-1.808060000	0.411442000
6	0.083047000	-2.258171000	0.950970000
6	-3.997766000	-2.801577000	-1.559407000
6	-5.394844000	-0.522211000	-1.276171000
6	-5.395546000	-2.336183000	0.747629000
6	-4.762606000	2.272194000	0.530059000
1	-5.534626000	2.932518000	0.932728000
1	-5.236502000	1.664078000	-0.233882000
6	-3.242992000	2.912333000	-1.384959000
1	-3.755000000	2.184783000	-2.005103000
6	-2.203923000	3.666026000	-1.928682000
1	-1.932928000	3.518114000	-2.969792000
6	-1.500674000	4.589225000	-1.153619000
6	-0.293286000	5.329075000	-1.705230000
1	-0.351570000	5.360976000	-2.797341000
1	-0.301541000	6.367123000	-1.360465000
6	-1.892361000	4.764559000	0.178588000
1	-1.367960000	5.482489000	0.802472000
6	-2.937787000	4.027271000	0.718020000
1	-3.218172000	4.192102000	1.754252000
6	-3.617345000	3.077469000	-0.052571000
8	2.433085000	-0.458454000	-1.160280000
8	2.434288000	-2.126221000	0.843502000
6	1.282339000	-0.798838000	-0.736635000
6	1.284740000	-1.785227000	0.423289000

6	4.451833000	2.491633000	0.204639000
1	5.267343000	3.157633000	0.494736000
1	4.846394000	1.803094000	-0.535245000
6	2.474781000	2.729119000	-1.348839000
1	2.701728000	1.747661000	-1.747279000
6	1.356577000	3.414230000	-1.805557000
1	0.736183000	2.962170000	-2.573106000
6	1.002126000	4.658806000	-1.276710000
6	1.835810000	5.224093000	-0.309046000
1	1.602611000	6.204057000	0.097564000
6	2.963065000	4.543218000	0.147608000
1	3.597472000	5.011313000	0.895955000
6	3.279051000	3.275586000	-0.345208000
75	4.199314000	-1.289266000	-0.163118000
8	4.377903000	-3.692901000	-2.095537000
8	6.386623000	0.104379000	-1.825781000
8	6.324120000	-2.576238000	1.663459000
6	4.314541000	-2.795295000	-1.379207000
6	5.582096000	-0.421878000	-1.181437000
6	5.552815000	-2.088137000	0.958187000
7	-4.382173000	1.389881000	1.641534000
6	-3.772142000	0.715421000	3.659115000
6	-3.517545000	-0.272164000	2.702602000
1	-3.595405000	0.667984000	4.721314000
1	-3.107272000	-1.261152000	2.827989000
7	4.117091000	1.697115000	1.401533000
6	3.516427000	1.175295000	3.466029000
6	3.503022000	0.046437000	2.641293000
1	3.280942000	1.229488000	4.516447000
1	3.257952000	-0.975674000	2.880976000
6	-4.321436000	1.758115000	2.942018000
6	3.909582000	2.205303000	2.636600000
1	-4.674864000	2.727559000	3.255750000
1	4.048117000	3.257317000	2.827850000
7	3.864849000	0.358597000	1.389457000
7	-3.884556000	0.133551000	1.479197000
1	0.086591000	-2.982466000	1.756562000
1	0.072310000	0.376996000	-2.077114000

Ato	m X	Y	Z
75	-3.193485000	-1.226122000	0.729789000
75	3.806723000	-0.826660000	-0.597093000
8	-6.068612000	-1.985155000	1.589360000
7	-3.878371000	-0.862318000	-1.417272000
7	3.625846000	1.179352000	2.090033000
8	6.748004000	0.136204000	-0.531248000
7	3.414880000	-0.049620000	1.536693000
7	-4.551406000	0.175536000	-1.996025000
8	4.184596000	-1.850714000	-3.487165000
8	4.622601000	-3.593038000	0.505270000
6	-4.999464000	-1.690477000	1.284399000
6	0.289142000	4.704774000	0.333305000
8	-2.132920000	-2.047239000	3.512442000
8	-3.464153000	1.551469000	2.035748000
6	3.844082000	2.404403000	1.317920000
1	4.299557000	2.120920000	0.371991000
1	4.580600000	2.989626000	1.876052000
6	2.589246000	3.222603000	1.049101000
6	-4.001951000	2.475009000	-1.109481000
6	-1.836676000	3.483917000	-1.516435000
1	-0.873710000	3.436274000	-2.010511000
6	-2.074787000	4.459014000	-0.541990000
6	1.528516000	4.966749000	-0.254867000
1	1.604773000	5.719474000	-1.033688000
6	5.660228000	-0.239430000	-0.553474000
6	-2.787909000	2.505294000	-1.796687000
1	-2.554425000	1.741301000	-2.531399000
6	4.343893000	-2.552997000	0.084998000
6	-3.409372000	0.539723000	1.476142000
6	0.233013000	3.719866000	1.323127000
1	-0.714268000	3.491346000	1.802447000
6	-2.531179000	-1.739662000	2.477558000
6	4.047207000	-1.472482000	-2.409784000
6	-5.020107000	1.359584000	-1.277770000
1	-5.382285000	1.027003000	-0.304477000
1	-5.895036000	1.712607000	-1.830248000

6	-4.274363000	3.493291000	-0.194782000
1	-5.212585000	3.494476000	0.352896000
6	-3.323501000	4.470396000	0.084151000
1	-3.542576000	5.222569000	0.836419000
6	3.482635000	1.124262000	3.433278000
1	3.603445000	2.013414000	4.032319000
6	3.140443000	-0.863282000	2.565604000
1	2.959404000	-1.911469000	2.388825000
6	2.659976000	4.238166000	0.094601000
1	3.595340000	4.429191000	-0.423287000
6	1.364637000	2.987255000	1.676369000
1	1.270635000	2.210165000	2.427723000
6	3.169031000	-0.173931000	3.781367000
1	2.995835000	-0.568788000	4.769069000
6	-0.971706000	5.421315000	-0.130879000
1	-1.344572000	6.076062000	0.664490000
1	-0.717078000	6.078030000	-0.969303000
6	-3.684364000	-1.757761000	-2.394295000
1	-3.204987000	-2.693524000	-2.156858000
6	-4.213996000	-1.303556000	-3.606826000
1	-4.210848000	-1.809602000	-4.558379000
6	-4.758122000	-0.071742000	-3.310184000
1	-5.277788000	0.645276000	-3.926410000
8	2.963891000	1.055857000	-1.264181000
6	1.684126000	1.180859000	-1.339474000
6	0.916843000	0.000353000	-0.762311000
8	1.047779000	2.084742000	-1.852287000
6	-0.434960000	0.071339000	-0.446924000
7	1.598894000	-1.151437000	-0.607640000
7	-1.116359000	-1.023478000	-0.088302000
1	-0.954004000	1.019686000	-0.474752000
6	0.888543000	-2.268016000	-0.375674000
6	-0.482151000	-2.212623000	-0.167463000
1	1.402140000	-3.220138000	-0.348454000
6	-1.350078000	-3.467758000	-0.099213000
8	-0.812398000	-4.552024000	-0.213342000
8	-2.613296000	-3.203632000	-0.005784000

Ator	n X	Y	Z
75	-3.574013000	-1.358657000	-0.256007000
8	-3.136706000	-3.416563000	-2.519024000
8	-6.584728000	-1.237881000	-0.966516000
8	-4.074551000	-3.666115000	1.733352000
6	-3.298034000	-2.651972000	-1.675262000
6	-5.468213000	-1.299214000	-0.693302000
6	-3.914342000	-2.803252000	0.980893000
6	-4.703929000	2.157389000	0.175598000
1	-5.655903000	2.688181000	0.268666000
1	-4.781136000	1.485333000	-0.675627000
6	-3.287870000	3.565855000	-1.339786000
1	-3.880959000	3.196216000	-2.169327000
6	-2.224718000	4.426710000	-1.593005000
1	-2.018038000	4.723123000	-2.616481000
6	-1.390675000	4.861329000	-0.562438000
6	-0.146644000	5.685640000	-0.846629000
1	-0.187365000	6.065411000	-1.871413000
1	-0.117350000	6.561074000	-0.190075000
6	-1.679081000	4.442142000	0.738782000
1	-1.045290000	4.761595000	1.560918000
6	-2.744320000	3.587003000	0.997303000
1	-2.917242000	3.261528000	2.017377000
6	-3.552115000	3.124018000	-0.043777000
6	4.617284000	2.372892000	-0.016134000
1	5.508688000	3.000338000	0.062492000
1	4.777406000	1.709150000	-0.859468000
6	2.614789000	3.102087000	-1.383680000
1	2.897376000	2.379760000	-2.141612000
6	1.494999000	3.902785000	-1.591162000
1	0.898030000	3.756441000	-2.485482000
6	1.116500000	4.865066000	-0.651154000
6	1.900973000	5.008192000	0.496936000
1	1.639942000	5.761415000	1.234890000
6	3.014040000	4.201687000	0.711256000
1	3.596184000	4.339156000	1.617404000

6	3.381346000	3.229452000	-0.222255000
75	3.611129000	-1.305024000	-0.283507000
8	3.087991000	-3.770816000	-2.068445000
8	4.106525000	0.273690000	-2.884316000
8	6.605600000	-2.074232000	-0.106327000
6	3.278753000	-2.847201000	-1.411221000
6	3.948944000	-0.299719000	-1.887988000
6	5.496549000	-1.784568000	-0.186927000
7	-4.574761000	1.345049000	1.387254000
6	-4.435883000	0.808827000	3.530035000
6	-3.807861000	-0.150694000	2.730358000
1	-4.540329000	0.809454000	4.602731000
1	-3.335238000	-1.072286000	3.030292000
7	4.605208000	1.559667000	1.206123000
6	4.749443000	1.002836000	3.343008000
6	4.142342000	-0.015612000	2.602824000
1	4.970027000	1.007925000	4.398006000
1	3.808337000	-0.990712000	2.917527000
6	-4.910565000	1.745826000	2.634213000
6	5.029625000	1.985842000	2.417886000
1	-5.446647000	2.669697000	2.786124000
1	5.503033000	2.949037000	2.525071000
7	4.046281000	0.318255000	1.306625000
7	-3.888934000	0.169193000	1.431620000
7	-1.369962000	-1.164172000	0.039875000
6	-0.573805000	-1.843720000	0.877476000
6	-0.782753000	-0.319039000	-0.832109000
6	0.808021000	-1.738832000	0.805717000
1	-1.020801000	-2.509394000	1.603402000
6	0.600573000	-0.228506000	-0.915085000
6	-1.693820000	0.506175000	-1.732939000
7	1.398824000	-0.961253000	-0.124140000
6	1.709925000	-2.506703000	1.761769000
1	1.049573000	0.427738000	-1.647021000
8	-1.187329000	1.278031000	-2.527863000
8	-2.950036000	0.289820000	-1.526496000
8	1.199011000	-3.110285000	2.686711000
8	2.966798000	-2.394098000	1.484985000

Aton	n X	Y	Z
75	-4.341940000	-0.944405000	0.521146000
75	3.748583000	-1.210362000	-0.776484000
8	-2.470096000	0.098752000	0.955786000
8	1.996123000	-2.532067000	-0.447102000
8	-2.705707000	-2.279599000	-0.110955000
8	2.067736000	0.071475000	-0.205171000
8	-6.642398000	-2.693506000	-0.554571000
7	-4.014444000	0.016339000	-1.523208000
7	4.421375000	-0.316901000	2.371027000
8	5.935779000	0.869167000	-1.380289000
7	3.971589000	-1.249539000	1.484047000
7	-3.929759000	1.328200000	-1.890668000
8	3.107594000	-1.230477000	-3.799869000
8	5.797406000	-3.484170000	-1.151054000
6	-1.386011000	-0.448780000	0.577337000
6	0.954995000	-0.480667000	0.056136000
6	0.875047000	-1.970594000	-0.231355000
6	-5.805076000	-2.022739000	-0.131122000
6	-0.367991000	-2.601438000	-0.281661000
1	-0.448578000	-3.638603000	-0.583884000
6	2.176987000	4.020550000	0.749409000
8	-4.511118000	-2.358381000	3.262987000
6	-1.514873000	-1.861186000	0.023179000
8	-6.355769000	1.158422000	1.531209000
6	-0.147966000	0.183597000	0.590041000
1	-0.073995000	1.215944000	0.892467000
6	4.993734000	0.980460000	1.996898000
1	5.720772000	0.815790000	1.204050000
1	5.562952000	1.302206000	2.873285000
6	3.996488000	2.054342000	1.595914000
6	-2.597170000	3.177631000	-0.826088000
6	-0.183121000	3.207379000	-0.905044000
1	0.743116000	2.711071000	-1.172022000
6	-0.151708000	4.412106000	-0.198369000
6	3.496008000	4.036508000	0.289720000

1	3.805012000	4.796891000	-0.419299000
6	5.121791000	0.083083000	-1.131391000
6	-1.394359000	2.609040000	-1.236687000
1	-1.387870000	1.664228000	-1.766023000
6	5.052792000	-2.612246000	-1.030539000
6	-5.615699000	0.359869000	1.140856000
6	1.802497000	3.056684000	1.691371000
1	0.790606000	3.051133000	2.082141000
6	-4.454731000	-1.833463000	2.240906000
6	3.352585000	-1.227570000	-2.675831000
6	-3.920006000	2.439751000	-0.939420000
1	-4.168634000	2.017642000	0.031768000
1	-4.729137000	3.123422000	-1.209688000
6	-2.570170000	4.420448000	-0.178275000
1	-3.500557000	4.891165000	0.127206000
6	-1.361885000	5.043591000	0.113223000
1	-1.344757000	6.002182000	0.620439000
6	4.304622000	-0.780601000	3.638461000
1	4.620489000	-0.176414000	4.474501000
6	3.573952000	-2.292884000	2.221565000
1	3.169208000	-3.162778000	1.728796000
6	4.388233000	3.046229000	0.691025000
1	5.387212000	3.028621000	0.267979000
6	2.708523000	2.098332000	2.128013000
1	2.385682000	1.350465000	2.844547000
6	3.761723000	-2.047198000	3.586289000
1	3.538544000	-2.701781000	4.412859000
6	1.163729000	5.004978000	0.226028000
6	-3.952142000	-0.683822000	-2.661038000
1	-3.996044000	-1.760925000	-2.623871000
6	-3.831959000	0.163659000	-3.768965000
1	-3.763443000	-0.113093000	-4.808368000
6	-3.821951000	1.435756000	-3.235066000
1	-3.732038000	2.404481000	-3.701524000
8	1.393028000	6.194678000	0.153219000

Aton	n X	Y	Z
75	-4.279898000	-1.289453000	-0.176037000
8	-2.493419000	-0.331440000	-1.032170000
8	-2.553583000	-1.924191000	1.033803000
8	-4.037764000	-3.717150000	-2.074874000
8	-6.422437000	-0.087748000	-2.037228000
8	-6.446978000	-2.769913000	1.439841000
6	-0.137485000	-0.320965000	-1.155319000
6	-1.357080000	-0.699741000	-0.596576000
6	-1.392712000	-1.618228000	0.620558000
6	-0.204064000	-2.064577000	1.202111000
6	-4.128931000	-2.814398000	-1.368570000
6	-5.635919000	-0.553198000	-1.329436000
6	-5.657797000	-2.209124000	0.812309000
6	-4.311729000	2.396325000	-0.228961000
1	-5.203356000	2.986002000	-0.453600000
1	-4.260945000	1.588879000	-0.957812000
6	-3.018492000	4.378510000	-1.127999000
1	-3.916425000	4.704289000	-1.645266000
6	-1.835214000	5.092471000	-1.292392000
1	-1.804724000	5.977709000	-1.917864000
6	-0.659607000	4.662959000	-0.668061000
6	0.628679000	5.405849000	-0.880438000
6	-0.713158000	3.547451000	0.177117000
1	0.177243000	3.216955000	0.696832000
6	-1.897846000	2.850496000	0.357373000
1	-1.911424000	1.985367000	1.009646000
6	-3.055902000	3.239834000	-0.316167000
8	2.205039000	-0.589995000	-1.081477000
8	2.149330000	-2.121046000	1.024504000
6	1.046446000	-0.825187000	-0.615884000
6	1.012209000	-1.724512000	0.613066000
6	5.190580000	1.960422000	0.074299000
1	6.128884000	2.475626000	0.287134000
1	5.388991000	1.231699000	-0.705653000
6	3.043348000	2.485900000	-1.122697000

1	3.045478000	1.480346000	-1.524557000
6	1.937121000	3.298433000	-1.328956000
1	1.099774000	2.919555000	-1.903252000
6	1.882282000	4.583874000	-0.779552000
6	2.994359000	5.075460000	-0.089409000
1	2.973839000	6.090050000	0.293283000
6	4.087695000	4.247304000	0.147442000
1	4.925854000	4.624490000	0.727095000
6	4.102267000	2.932170000	-0.330793000
75	3.919334000	-1.661327000	-0.207409000
8	3.429444000	-4.119481000	-2.011309000
8	6.094407000	-0.759532000	-2.191837000
8	5.985699000	-3.266716000	1.422681000
6	3.612161000	-3.200607000	-1.344609000
6	5.296806000	-1.103867000	-1.427148000
6	5.233691000	-2.662642000	0.791027000
7	-4.490241000	1.770223000	1.082466000
6	-4.642823000	1.490455000	3.270237000
6	-4.421749000	0.268222000	2.624090000
1	-4.766176000	1.666464000	4.326441000
1	-4.332272000	-0.722476000	3.040980000
7	4.835447000	1.222693000	1.299969000
6	4.295036000	0.858645000	3.415083000
6	3.813676000	-0.165248000	2.592185000
1	4.202864000	0.944719000	4.485550000
1	3.270713000	-1.059906000	2.852303000
6	-4.675308000	2.422425000	2.253205000
6	4.932453000	1.725320000	2.552500000
1	-4.793478000	3.494565000	2.271360000
1	5.435586000	2.662551000	2.730512000
7	4.133446000	0.053787000	1.309697000
7	-4.329382000	0.435503000	1.300208000
1	-0.231337000	-2.723214000	2.061794000
1	-0.114725000	0.309900000	-2.035389000
8	0.653396000	6.601970000	-1.095098000

Ato	m X	Y	Z
75	-3.106242000	-1.368002000	0.761576000
75	3.876882000	-0.813206000	-0.605205000
8	-5.938542000	-2.160133000	1.728328000
7	-3.879209000	-1.096633000	-1.371772000
7	3.652195000	1.310718000	2.001542000
8	6.789087000	0.237564000	-0.596456000
7	3.493908000	0.048503000	1.503767000
7	-4.641932000	-0.119971000	-1.949692000
8	4.267915000	-1.940426000	-3.454293000
8	4.777601000	-3.509867000	0.598040000
6	-4.885995000	-1.852913000	1.382296000
6	0.052526000	4.564194000	0.315199000
8	-1.957732000	-2.048286000	3.547588000
8	-3.396043000	1.473495000	1.917087000
6	3.763975000	2.516302000	1.178009000
1	4.144075000	2.215844000	0.203455000
1	4.518313000	3.152546000	1.648206000
6	2.455162000	3.268980000	0.989998000
6	-4.179275000	2.223824000	-1.148187000
6	-1.961852000	3.152814000	-1.400676000
1	-0.950297000	3.050037000	-1.776218000
6	-2.302417000	4.226763000	-0.573743000
6	1.283234000	5.119585000	-0.050249000
1	1.299490000	6.039877000	-0.623594000
6	5.713121000	-0.169487000	-0.597010000
6	-2.903940000	2.173755000	-1.705878000
1	-2.616652000	1.342206000	-2.340206000
6	4.467776000	-2.495536000	0.139047000
6	-3.343072000	0.426476000	1.425305000
6	0.043173000	3.401404000	1.089681000
1	-0.900432000	2.978298000	1.417481000
6	-2.387736000	-1.793733000	2.511317000
6	4.125020000	-1.524197000	-2.392050000
6	-5.148606000	1.058145000	-1.248646000
1	-5.452308000	0.738798000	-0.250595000

1	-6.061760000	1.351753000	-1.772137000
6	-4.545876000	3.347998000	-0.399453000
1	-5.543409000	3.414198000	0.026169000
6	-3.624141000	4.354514000	-0.134491000
1	-3.904398000	5.210713000	0.469473000
6	3.539672000	1.305783000	3.349192000
1	3.616514000	2.226291000	3.906780000
6	3.289927000	-0.732966000	2.573295000
1	3.164147000	-1.796326000	2.446300000
6	2.468135000	4.466069000	0.264753000
1	3.411102000	4.872989000	-0.089252000
6	1.233323000	2.772761000	1.443143000
1	1.194119000	1.870635000	2.043652000
6	3.307981000	0.008900000	3.758304000
1	3.180088000	-0.351985000	4.765718000
6	-1.239623000	5.195297000	-0.129073000
6	-3.662184000	-2.001963000	-2.334284000
1	-3.115181000	-2.899020000	-2.093233000
6	-4.263046000	-1.614594000	-3.537043000
1	-4.260749000	-2.144042000	-4.475748000
6	-4.876076000	-0.413648000	-3.250073000
1	-5.461470000	0.252388000	-3.864615000
8	2.974046000	1.018739000	-1.332022000
6	1.691522000	1.110215000	-1.393034000
6	0.962106000	-0.083995000	-0.794080000
8	1.028412000	1.999770000	-1.898384000
6	-0.390791000	-0.045080000	-0.483646000
7	1.678338000	-1.209091000	-0.599202000
7	-1.044120000	-1.145397000	-0.093498000
1	-0.936607000	0.885163000	-0.534282000
6	0.998000000	-2.338191000	-0.334791000
6	-0.376095000	-2.317199000	-0.133923000
1	1.539130000	-3.273373000	-0.272715000
6	-1.214007000	-3.590223000	-0.021245000
8	-0.651994000	-4.664080000	-0.109355000
8	-2.482288000	-3.351565000	0.078171000
8	-1.412395000	6.396835000	-0.122241000

Aton	n X	Y	Z
75	-3.638119000	-1.380683000	-0.294350000
8	-3.137581000	-3.406988000	-2.572726000
8	-6.621433000	-1.227473000	-1.104250000
8	-4.216499000	-3.714636000	1.640905000
6	-3.320911000	-2.654733000	-1.722914000
6	-5.516015000	-1.300255000	-0.794468000
6	-4.027349000	-2.841593000	0.907586000
6	-4.621034000	2.195955000	0.150386000
1	-5.568173000	2.740004000	0.155210000
1	-4.614433000	1.538526000	-0.717986000
6	-3.487172000	4.254693000	-0.777149000
1	-4.398261000	4.479675000	-1.324120000
6	-2.368272000	5.062431000	-0.949722000
1	-2.403835000	5.921633000	-1.610332000
6	-1.167930000	4.747496000	-0.305586000
6	0.076965000	5.546449000	-0.549767000
6	-1.137856000	3.662691000	0.575784000
1	-0.224612000	3.423719000	1.107925000
6	-2.265356000	2.880677000	0.775640000
1	-2.213134000	2.043900000	1.461945000
6	-3.439128000	3.142888000	0.069891000
6	4.797519000	2.184089000	-0.118742000
1	5.742137000	2.725928000	-0.043088000
1	4.899446000	1.473808000	-0.933054000
6	2.556285000	2.738360000	-1.133202000
1	2.607768000	1.807859000	-1.683154000
6	1.409160000	3.517935000	-1.210567000
1	0.556491000	3.157819000	-1.776680000
6	1.352172000	4.747516000	-0.545189000
6	2.478644000	5.206414000	0.143353000
1	2.450804000	6.183188000	0.614211000
6	3.602618000	4.394076000	0.261406000
1	4.452677000	4.743684000	0.840547000
6	3.639445000	3.134715000	-0.347894000
75	3.568014000	-1.477698000	-0.262164000
8	3.008478000	-3.995266000	-1.960895000
8	4.114449000	0.005355000	-2.908178000
8	6.545059000	-2.299009000	-0.038064000
6	3.212004000	-3.053267000	-1.334765000

6	3.937911000	-0.534851000	-1.897386000
6	5.443541000	-1.988512000	-0.136167000
7	-4.598360000	1.359794000	1.351835000
6	-4.565198000	0.799032000	3.491581000
6	-4.015995000	-0.214170000	2.699422000
1	-4.696764000	0.802531000	4.561284000
1	-3.641176000	-1.178239000	3.003569000
7	4.669429000	1.420309000	1.134375000
6	4.631349000	0.979817000	3.302683000
6	4.031071000	-0.051300000	2.574240000
1	4.776566000	1.034387000	4.369273000
1	3.635542000	-0.993775000	2.915526000
6	-4.917394000	1.786097000	2.594838000
6	5.020880000	1.896530000	2.350676000
1	-5.352569000	2.762117000	2.743192000
1	5.519036000	2.848598000	2.443281000
7	4.040105000	0.212362000	1.258823000
7	-4.025732000	0.122443000	1.402075000
7	-1.426748000	-1.224706000	0.052147000
6	-0.644396000	-1.921385000	0.889955000
6	-0.815213000	-0.400887000	-0.824433000
6	0.741525000	-1.848869000	0.818484000
1	-1.105801000	-2.570473000	1.622055000
6	0.568119000	-0.367618000	-0.926419000
6	-1.697126000	0.491452000	-1.688490000
7	1.352072000	-1.105339000	-0.126511000
6	1.628479000	-2.605193000	1.798281000
1	1.027650000	0.250586000	-1.682694000
8	-1.162321000	1.310896000	-2.415823000
8	-2.958615000	0.286770000	-1.515056000
8	1.102469000	-3.191230000	2.725859000
8	2.889228000	-2.495173000	1.538835000
8	0.062412000	6.747878000	-0.726304000

Complexes	Helicate	Mesocate	Energ	y Difference
	Total Energy(Hartree)		Hartree	kcal/mol
1	-2399.502304	-2399.503030	0.000726	0.456
2	-2509.055163	-2509.061627	0.006464	4.056
3	-2473.529280	-2473.537279	0.007999	5.019
4	-2583.086966	-2583.093025	0.006059	3.802

	Table S1. Total Energy and	difference in energy	gies of complexes 1	-4 (helicates and mesocates)
--	----------------------------	----------------------	---------------------	------------------------------

Table S2. Crystal data and structure refinement for 1.

Empirical formula	$C_{93}H_{80}N_8O_{20}Re_4$	
Formula weight	2374.45	
Temperature	296(2) К	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	<i>a</i> = 8.9621(4) Å	α = 83.058(3)°.
	<i>b</i> = 10.8991(3) Å	β=86.516(3)°.
	<i>c</i> = 23.4881(7) Å	γ = 79.937(3)°.
Volume	2240.59(14) Å ³	
Z	1	
Density (calculated)	1.760 mg/m ³	
Absorption coefficient	5.460 mm ⁻¹	
F(000)	1154	
Crystal size	0.160 x 0.140 x 0.12	0 mm ³
Theta range for data collection	1.910 to 25.000°.	
Index ranges	-10 < = h < = 10, -2	12<=k<=12, -26<=l<=27
Reflections collected	33548	
Independent reflections	7882 [<i>R</i> (int) = 0.0792]
Completeness to theta $= 25.000^{\circ}$	100.0 %	
Absorption correction	Semi-empirical from	n equivalents
Max. and min. transmission	0.560 and 0.475	
Refinement method	Full-matrix least-squ	uares on F ²
Data / restraints / parameters	7882 / 642 / 695	
Goodness-of-fit on F ²	1.007	
Final R indices [I>2σ(I)]	$R_1 = 0.0459$, $wR_2 = 0$.	1137
R indices (all data)	$R_1 = 0.0670$, $wR_2 = 0$.	1289
Extinction coefficient	n/a	
Largest diff. peak and hole	1.939 and –1.111 e.	Å ⁻³

Figure S26. Simulated absorption spectrum of **1** in DMSO with oscillator strength (f) values (shown as vertical bars, same color code).

Figure S27. Simulated absorption spectrum of **2** in DMSO with oscillator strength (f) values (shown as vertical bars, same color code).

Figure S28. Simulated absorption spectrum of **3** in DMSO with oscillator strength (f) values (shown as vertical bars, same color code).

Figure S29. Simulated absorption spectrum of **4** in DMSO with oscillator strength (f) values (shown as vertical bars, same color code).

Figure S30. Frontier molecular orbitals involved in TDDFT/IEF-PCM transitions of 3.

	LUMO -3.42 eV pydc ²⁻ (91%)		LUMO+1 -2.37 eV pydc ²⁻ (95%)	
HOMO -6.55 eV Re (55%) CO (25%) pydc ²⁻ (10%)	HOMO-2 -6.7 eV Re (59%) CO (27%) pydc ²⁻ (10%)	HOMO-3 -6.76 eV Re (60%) CO (28%) pydc ²⁻ (8%)	HOMO-4 -6.81 eV Re (58%) CO (27%) pydc ²⁻ (9%)	HOMO-15 -8.1 eV pydc ²⁻ (14%) L ² (78%)

Figure S31. Frontier molecular orbitals involved in TDDFT/IEF-PCM transitions of 4.

Figure S32. Emission spectra of **1** (λ_{exc} = 270 nm), L¹ (λ_{exc} = 265 nm), and H₂-dhbq (λ_{exc} = 285 nm) in DMSO.

Figure S33. Emission spectra of **2** (λ_{exc} = 270 nm), L¹ (λ_{exc} = 265 nm), and H₂-pydc (λ_{exc} = 277 nm) in DMSO.

Figure S34. Emission spectra of **3** (λ_{exc} = 270 nm), L² (λ_{exc} = 265 nm), and H₂-dhbq (λ_{exc} = 285 nm) in DMSO.

Figure S35. Emission spectra of **4** (λ_{exc} = 270 nm), L² (λ_{exc} = 265nm), and H₂-pydc (λ_{exc} = 277 nm) in DMSO.

Table S3. Major singlet excited state transitions for 3 from TDDFT/IEF-PCM calculations with
DMSO as the solvent model.

Trans band	Wavelength (nm)	Oscillator strength (f)	Major contribution [%]	Character
2	512	0.1824	H-3 → LUMO (30%), H-1 → LUMO (61%)	Re (46%) CO (23 %) → dhbq ²⁻ (92%) dhbq ²⁻ (25%)
4	487	0.2164	H-3 → LUMO (65%), H-1 → LUMO (32%)	Re (55%) CO (30 %) → dhbq ^{2−} (92%) dhbq ^{2−} (14 %)
12	339	0.0512	H-11 → LUMO (84%)	dhbq ²⁻ (12 %) L ² (83%) \rightarrow dhbq ²⁻ 92%)
16	324	0.0725	H-14 → LUMO (76%)	dhbq ²⁻ (20 %) L ² (75%) \rightarrow dhbq ²⁻ 92%)

Table S4. Major singlet excited state transitions for 4 from TDDFT/IEF-PCM calculations with DMSO as the solvent model.

Trans band	Wavelength (nm)	Oscillator strength (f)	Major contribution [%]	Character	
1	509	0.0304	$HOMO \rightarrow LUMO (90\%)$	Re (55%) CO (25%) pvdc ²⁻ 10%)	\rightarrow pydc ²⁻ (91%)
5	463	0.1457	H-4 → LUMO (39%), H-3 → LUMO (29%), H-2 → LUMO (20%)	Re (58%) CO (27%) pydc ^{2–} (9%)	\rightarrow pydc ^{2–} (91%)
14	342	0.0227	H-2 → L+1 (92%)	Re (59%) CO (27%)	
23	306	0.0247	$\text{H-15} \rightarrow \text{LUMO} \text{ (96\%)}$	pydc ²⁻ (10%) pydc ²⁻ (14 %) L ² (78%)	\rightarrow pydc ²⁻ (95%) \rightarrow pydc ²⁻ (91%)

Table S5. Free energies of activation calculated from the coalescence temperatures and the chemical shifts (¹H NMR, 500 MHz) of the signals of dhbq^{2–} protons in 1 and 3, pydc^{2–} protons in 2 and 4.

	δ (ppm)	δ (ppm)	Δδ (ppm)	Δν (Hz)	Тс (К)	∆G [‡] (J/mol)	∆G [‡] (Kcal/mol)
1	5.787	5.785	0.002	1	373	89565	21.4
3	5.788	5.786	0.002	1	373	89565	21.4
2	9.144	9.124	0.02	10	358	78988	18.8
4	9.144	9.124	0.02	10	358	78988	18.8

$$\Delta G^{\dagger} = \mathrm{RT}_{\mathrm{c}} \left[22.96 + \ln \left(\frac{\mathrm{T}_{\mathrm{c}}}{\Delta \mathrm{v}} \right) \right]$$

Where:

R is the gas constant.

 Δv is the chemical shift difference (Hz) between the two exchanging nuclei at temperature below coalescence.

Tc is the coalescence temperature.

 ΔG^{\dagger} is the free energy of activation.