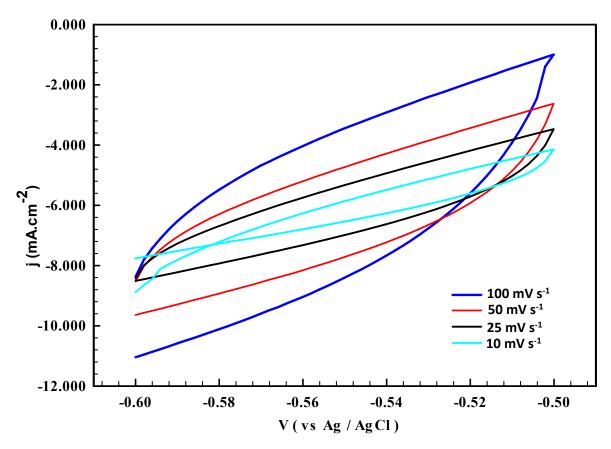

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information


Porous perovskite CaMnO₃/rGO hybrid as an efficient electrocatalyst in lithium-oxygen batteries

Shaghayegh Biniazi ^a, Hamed Asgharzadeh ^{a*}, Iraj Ahadzadeh ^b, Özkan Aydın ^c, Murat Farsak ^{d*}

- ^a Nanostructured and Novel Materials Laboratory (NNML), Department of Materials Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
- ^b Research Laboratory of Electrochemical Instrumentation and Energy Systems, Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- ^c Osmaniye Korkut Ata University, Engineering Faculty, Department of Chemical Engineering, Turkey
- ^d Osmaniye Korkut Ata University, Institute of Natural and Applied Science, Department of Battery Systems and Hydrogen Technologies, Turkey

Figure S1. XRD patterns of the CaMnO₃/rGO prepared by the solvothermal method in ethanol (CaMnO₃/rGO-E) and water (CaMnO₃/rGO-W) media.

Figure S2. The Cyclic voltammograms of the CaMnO₃/rGO electrode in the alkaline solution at different scan rates.