## Supporting information for:

## Moderating the interaction among Pd, CeO<sub>2</sub>, and Al<sub>2</sub>O<sub>3</sub> for the

## improved three-way catalysts

Han Zhao <sup>a,b,\*</sup>, Longchun Bian <sup>c</sup>, Junchen Du <sup>a</sup>, Yunkun Zhao <sup>a,\*</sup>

 <sup>a</sup> State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China
 <sup>b</sup> Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

<sup>c</sup> School of Chemical Science and Technology, Yunnan University, Kunming 650091, China

Email:

hanzhao@dicp.ac.cn (Dr. Han Zhao) ykzhao@sohu.com (Prof. Yunkun Zhao)



Fig. S1. The (a) isothermal  $N_2$  adsorption/desorption curves and (b) the pore size distribution profiles of the different samples as indicated. The Al<sub>2</sub>O<sub>3</sub> was reduced in 10%  $H_2/N_2$  at 350 °C for 1h (ramp rate = 10 °C/min), then was naturally cooled to room temperature (RT) in the tubular furnace



Fig. S2. The CO pulse-chemisorption curves of different catalysts as indicated. The PdCe/Al<sub>2</sub>O<sub>3</sub>-CP (reduced Al<sub>2</sub>O<sub>3</sub>) was identical to the PdCe/Al<sub>2</sub>O<sub>3</sub>-CP, and the PdCe/Al<sub>2</sub>O<sub>3</sub>-CP (un-reduced Al<sub>2</sub>O<sub>3</sub>) was made following the identical procedure to that of the PdCe/Al<sub>2</sub>O<sub>3</sub>-CP (reduced Al<sub>2</sub>O<sub>3</sub>) except that the un-reduced Al<sub>2</sub>O<sub>3</sub> was adopted to replace the reduced Al<sub>2</sub>O<sub>3</sub>, hereinafter inclusive.



Fig. S3. The stabilized IR spectra of different catalysts during (a) CO adsorption in CO/He flow or (b) CO desorption in He flow.



Fig. S4. Conversion-temperature curves of (a)  $C_3H_6$  and (b) CO over the different catalysts as indicated.

|                                          | 1 1                            | 1                                |                |
|------------------------------------------|--------------------------------|----------------------------------|----------------|
|                                          | $S_{BET} \left( m^2/g \right)$ | Pore Volume (cm <sup>3</sup> /g) | Pore Size (nm) |
| Al <sub>2</sub> O <sub>3</sub> (reduced) | 145                            | 0.82                             | 22.1           |
| PdCe/Al <sub>2</sub> O <sub>3</sub> -CP  | 120                            | 0.58                             | 17.4           |
| PdCe/Al <sub>2</sub> O <sub>3</sub> -Imp | 108                            | 0.42                             | 15.0           |

Table S1. The structural properties of different samples.



Fig. S5. HRTEM images of the PdCe/Al<sub>2</sub>O<sub>3</sub>-Imp. The lattice spacing of the CeO<sub>2</sub> facets were noted in Å.



Fig. S6. The evolution of CO-DRIFTs curves over the PdCe/Al<sub>2</sub>O<sub>3</sub>-CP during CO desorption.



Fig. S7. The evolution of CO-DRIFTs curves over the PdCe/Al<sub>2</sub>O<sub>3</sub>-Imp during CO desorption.



Fig. S8. The time-on-stream conversion of  $C_3H_6$ , CO, and NO over the different catalysts at 300 °C under an oxygen-deficient condition. a: PdCe/Al<sub>2</sub>O<sub>3</sub>-CP, b: PdCe/Al<sub>2</sub>O<sub>3</sub>-Imp. The concentrations of  $C_3H_6$  and CO were measured by GC, while that of NO by MS. Conditions: 0.1 g of catalysts, 0.1% CO/ 0.1%  $C_3H_6/$  0.05% NO/ 0.166%  $O_2/$  8%  $CO_2/$  8  $H_2O/$  He, 150 mL/min.



Fig. S9. The (a) isothermal N<sub>2</sub> adsorption/desorption curves and (b) the pore size distribution profiles of the different samples as indicated. the calcined PdCe/Al<sub>2</sub>O<sub>3</sub>-CP-c and PdCe/Al<sub>2</sub>O<sub>3</sub>-Imp-c samples were aged at 1000 °C in air for 4 h, then reduced by heating in 10% H<sub>2</sub>/He from RT to 500 °C, finally passivated in 1.5% O<sub>2</sub>/N<sub>2</sub> at RT for 12 h to get the aged samples PdCe/Al<sub>2</sub>O<sub>3</sub>-CP-aged and PdCe/Al<sub>2</sub>O<sub>3</sub>-Imp-aged, respectively, hereinafter inclusive.



Fig. S10. The CO pulse-chemisorption curves of different catalysts as indicated.



Fig. S11. The stabilized IR spectra of different catalysts during (a) CO adsorption in CO/He flow or (b) CO desorption in He flow.



Fig. S12. Conversion-temperature curves of (a)  $C_3H_6$  and (b) CO over the different catalysts as indicated. (c) Time-on-stream curves of the  $C_3H_6$  and CO conversion over the different catalysts.

|                                               | $S_{BET} \left( m^{2/g}  ight)$ | Pore Volume<br>(cm <sup>3</sup> /g) | Pore Size<br>(nm) | Pd dispersion |
|-----------------------------------------------|---------------------------------|-------------------------------------|-------------------|---------------|
| PdCe/Al <sub>2</sub> O <sub>3</sub> -CP       | 120                             | 0.58                                | 17.4              | 37            |
| PdCe/Al <sub>2</sub> O <sub>3</sub> -Imp      | 108                             | 0.42                                | 15.0              | 15            |
| PdCe/Al <sub>2</sub> O <sub>3</sub> -CP-aged  | 87                              | 0.52                                | 22.4              | 9             |
| PdCe/Al <sub>2</sub> O <sub>3</sub> -Imp-aged | 70                              | 0.36                                | 22.4              | 4             |

Table S2. The structural properties of different samples.