Supplementary Information

A high- $T_{\rm C}$ heavy rare earth monoxide semiconductor TbO with more than half-filled 4f orbital

Satoshi Sasaki,^a Daichi Oka,^a Kenichi Kaminaga,^b Daichi Saito,^a Taku Yamamoto,^a Nobuto Abe,^a Hirokazu Shimizu^a and Tomoteru Fukumura^{*a,c,d,e}

^a Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578,

Japan E-mail: tomoteru.fukumura.e4@tohoku.ac.jp

^b Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai 980-8579, Japan

^c Advanced Institute for Materials Research (WPI-AIMR) and Core Research Cluster, Tohoku University, Sendai 980-8577, Japan

^d Center for Science and Innovation in Spintronics, Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan

^e Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan

Sample	Substrate	Target	$T_{\text{substrate}}$	P_{O_2}	E_{laser}	Repetition rate
			[°C]	[Torr]	[J/cm ²]	[Hz]
TbO	CaF ₂ (001)	Tb ₄ O ₇	375	-	0.75	15
Tb ₂ O ₃	YAlO ₃ (110)	Tb ₄ O ₇	250	5.0×10^{-6}	0.50	5
Tb	$CaF_{2}(111)$	Tb	R.T.	_	0.70	20

Table S1 Growth parameters of TbO, Tb_2O_3 , and Tb thin films.

Fig. S1 Tb 4d XPS spectra of TbO, Tb_2O_3 and Tb thin films. The atomic ratio of Tb:O in TbO thin film was evaluated to be 1:0.95, as described below. Prior to the measurements, capping or surface oxidation layer was removed by in-situ Ar ion sputtering.

Quantitative analysis of TbO layer in TbO thin film by XPS

The composition of a TbO thin film was determined from the areal intensity ratio of Tb 4d and O 1s peaks by XPS measurements. The surface oxidized Tb_2O_3 layer of the TbO thin film was removed by Ar⁺ sputtering. For the quantitative composition analysis, a Tb_2O_3 thin film was used as a reference, assuming its stoichiometric composition.

The Tb:O ratio was evaluated by considering the electron inelastic mean free paths (IMFP) with the TPP-2M predictive equation.^{S1} The atomic concentration of each atom C_i (i = Tb, O) in TbO was obtained by the areal intensity of each atom in TbO and Tb₂O₃ (I^{TbO}_{i} , I^{Tb2O3}_{i}), the

IMFP of each atom in TbO and Tb₂O₃ (λ^{TbO}_{i} , λ^{Tb2O3}_{i}), and the atomic density of each atom in TbO and Tb₂O₃ (N^{TbO}_{i} , N^{Tb2O3}_{i}) as follows, where K_i is relative intensity $K_i = I^{TbO}_{i}/I^{Tb2O3}_{i}$.^{S2}

$$C_{i} = (I^{TbO}_{i}/I^{Tb2O3}_{i}) / \{ (N^{TbO}_{i}/N^{Tb2O3}_{i}) \times (\lambda^{TbO}_{i}/\lambda^{Tb2O3}_{i}) \}$$

= $(K_{i}) / \{ (N^{TbO}_{i}/N^{Tb2O3}_{i}) \times (\lambda^{TbO}_{i}/\lambda^{Tb2O3}_{i}) \}$
= $(K_{i}) \times \{ (N^{Tb2O3}_{i}) \times (\lambda^{Tb2O3}_{i}/\lambda^{TbO}_{i}) \} / N^{TbO}_{i}$

The relative intensity $({}^{K_i})$ of Tb and O was calculated to be ${}^{K_{Tb}} = 1.01$ and ${}^{K_o} = 0.596$. Because of unknown ${}^{N^{TbO}}{}^i$, the relative atomic concentration $({}^{C^{rel}}{}^i)$ was introduced with the matrix factor, $F_i = N^{Tb2O3}{}_i \times (\lambda^{Tb2O3}{}_i/\lambda^{TbO}{}_i)_{S2}$

$$C^{rel}_{i} = \frac{C_i}{\sum} C_i = \frac{\left(K_i F_i / N^{TbO}_i\right)}{\sum} \left(\frac{K_i F_i / N^{TbO}_i}{\sum}\right) = \frac{\left(K_i F_i\right)}{\sum} \left(K_i F_i\right)$$

From the TPP-2M IMFP equation, $\lambda^{TbO}_{Tb} = 5.68$ Å and $\lambda^{TbO}_{0} = 7.98$ Å, while $\lambda^{Tb2O3}_{Tb} = 7.65$ Å and $\lambda^{Tb2O3}_{0} = 11.5$ Å. In the referential Tb₂O₃ thin film, $N^{Tb2O3}_{Tb} = 0.0496$ mol/cm³ and $N^{Tb2O3}_{0} = 0.0596$ mol/cm³. Thus, the matrix factor $F_{Tb} = 0.0537$ and $F_{0} = 0.0861$. Thus,

$$C^{rel}_{Tb} = (K_{Tb}/F_{Tb})/(K_{Tb} \times F_{Tb} + K_0 \times F_0) = 0.513,$$
$$C^{rel}_{0} = (K_0/F_0)/(K_{Tb} \times F_{Tb} + K_0 \times F_0) = 0.486.$$

Therefore, the Tb:O ratio of TbO thin film, C^{rel}_{Tb} : C^{rel}_{0} , was 1:0.95.

Fig. S2 Typical XRD θ -2 θ patterns of (a) TbO thin film grown on CaF₂ (001) substrate (the same data as Fig. 1a) and (b) Tb₂O₃ thin film grown on YAlO₃ (110) substrate.

Fig. S3 (a) Temperature and (b) magnetic field dependence of magnetization for Tb_2O_3 (001) epitaxial thin film under in-plane magnetic field.

Fig. S2 (a) In-plane M-T curves during ZFC and FC for TbO epitaxial thin film under different magnetic field. (b) The difference between the FC and ZFC curves. Inset shows magnified view around $T_{\rm C}$.

References

- ^{S1} S. Tanuma, C.J. Powell and D.R. Penn, Calculation of electron inelastic mean free paths (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation. *Surf. Interface Anal.*, 2003, **35**, 268–275.
- ^{S2} S. Tanuma, Quantitative Surface Analysis by X-ray Photoelectron Spectroscopy. J. Surf. Anal., 1998, 4, 20–34.