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1. Experimental section 

1.1. Synthesis of heterostructures with different electrodeposition times 

Two other heterostructures (NiCo-LDH-600s/CuNiCo-S/NF and 

NiCo-LDH-1200s/CuNiCo-S/NF) with different deposition times were prepared, with 

electrodeposition times of 600s and 1200s, and the rest of the preparation process was 

consistent with NiCo-LDH/CuNiCo-S/NF. 

1.2. Synthesis of the NiCo2S4/NF 

NiCo2S4/NF was prepared using the same method and parameters as CuNiCo-S/NF, 

but without the Cu(NO3)2·3H2O. 

1.3. Synthesis of the NiCo-LDH/NF 

The synthesis process of NiCo-LDH/NF was similar to NiCo-LDH/CuNiCo-S/NF, 

simply replacing the working electrode CuNiCo-S/NF with NF. 

1.4. Synthesis of the NiCo-LDH/NiCo2S4/NF 

NiCo-LDH/NiCo2S4/NF was prepared using the same method and parameters of 

NiCo-LDH/CuNiCo-S/NF, but without the Cu(NO3)2·3H2O. 

1.5. Synthesis of the RuO2/NF 

Firstly, 4mg RuO2 powder was dissolved in 10mL ethanol and sonicated for 30 

minutes, then 5mL solution was evenly dropped onto 2×1cm NF with a pipette, and finally, 

RuO2/NF was obtained after air-drying at room temperature. 

1.6. Synthesis of the Pt/C/NF 

Firstly, 4mg 20wt% Pt/C powder was dissolved in 10mL ethanol and sonicated for 30 
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minutes, then 5mL solution was evenly dropped onto 2×1cm NF with a pipette, and finally, 

Pt/C/NF was obtained after air-drying at room temperature. 

1.7. Characterization 

 Scanning electron microscope (SEM; Hitachi S4800) and transmission electron 

microscope (TEM; JEM2100F) were used to study the morphology and structure of the 

samples. The crystallographic information of samples was characterized by X-ray 

diffraction (XRD; Bruker AXS GmbH, D8ADVANCE, Cu Ka radiation). The chemical 

state and surface compositions were analyzed by X-ray photoelectron spectroscopy (XPS; 

Thermo, ESCALAB 250Xi) using a monochromatic Al Ka as the X-ray source. Inductively 

coupled plasma mass spectrometry (ICP-MS) was used to obtain the elemental composition 

of the samples. The contact angle was measured by an instrument JC2000D.  

1.8. Electrochemical measurement  

All electrochemical tests were measured by a three-electrode system, which was 

connected to an Ivium-N-Stat electrochemical workstation. The synthesized samples were 

used as the working electrode, a graphite rod was applied as the auxiliary electrode and a 

saturated calomel electrode (SCE) was utilized as the reference electrode.1.0 M KOH 

electrolyte which was injected N2 for 30 min was used as the electrolyte for all 

electrochemical measurements. For the OER tests, all linear-sweep voltammograms (LSV) 

were measured from 0 to 0.8 V (vs. SCE) at a scan rate of 2 mV·s−1. The HER activities of 

samples were assessed by the linear sweep voltammetry (LSV) from -1 to -1.6 V (vs. SCE) 

with a scan rate of 2 mV·s-1. The stability of the samples was tested by two modes of 
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chronopotentiometry measurements, one was carried out at an invariable current for 48 h, 

and the other was applied current from 50 to 10 mA·cm-2 with an increment of 10 mA·cm-2 

per 8 h. The electrochemical impedance spectroscopy (EIS) was conducted at the frequency 

range of 0.1 MHz to 0.1 Hz with an amplitude of 5 mV. All potential in these tests was 

transformed by the equation (ERHE=ESCE+0.241+0.059pH). All polarization curves were 

performed with 95% iR-correction. Ecorrected=Emeasured-j×R×S, Ecorrected is the corrected 

potential, Emeasured is the measured potential, j is the current density, R is the ohmic drop 

measured by the electrochemical impedance spectroscopy, S is the geometric area of the 

catalytic electrode. The electrochemical surface areas (ECSAs) of the electrodes were 

expressed by the double-layer capacitance values (Cdl). The Cdl was tested by the cyclic 

voltammograms (CVs) with different scan rates (20, 40, 60, 80, and 100 mV·s-1) in the 

potential range from -1.05 to -0.85 V (vs. SCE). The Faraday efficiency (FE) was acquired 

according to the following formula1: 

 

where Vexp. is the experimental volume of O2 or H2, Vthe. is the theoretical volume of O2 or 

H2.  
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2. Supplementary Figures and Tables 

 

Figure S1. The SEM images of CuNiCo-S/NF. 

 

Figure S2. Higher resolution element mapping of NiCo-LDH/CuNiCo-LDH. 

 

 

Figure S3. XRD pattern of NiCo-LDH/NF. 
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Figure S4. (a) Cu 2p and (b)S 2p XPS spectra of NiCo-LDH/CuNiCo-S/NF and 

CuNiCo-S/NF 

 

Figure S5. Static water droplet contact angles of NiCo-LDH/CuNiCo-S/NF, 

NiCo-LDH/NiCo2S4/NF, CuNiCo-S/NF, NiCo2S4/NF, NiCo-LDH/NF and NF. 
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Figure S6. OER polarization curves of heterostructure with different deposition times 

 

Figure S7. Overpotentials of the synthesized catalysts at 50 and 100 mA·cm-2.  

 

Figure S8. The equivalent circuit diagram used for the analysis of EIS curves. 
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Figure S9. The comparison of stability between NiCo-LDH/CuNiCo-S/NF and RuO2/NF. 

 

Figure S10. HER polarization curves of heterostructure with different deposition times 

 

Figure S11. Overpotentials of the synthesized catalysts at 10, 50, and 100 mA·cm-2. 
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Figure S12. Chronopotentiometry curves of NiCo-LDH/CuNiCo-S/NF and Pt/C/NF at an 

invariable current density of 10 mA·cm-2 (the values shown in this graph indicate the 

increase rate of the potential). 

 

Figure S13. LSV curves of NiCo-LDH/CuNiCo-S/NF before and after the 

chronopotentiometry. 
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Figure S14. The comparison of stability between CuNiCo-S/NF and NiCo2S4/NF (the 

values shown in this graph indicate the decay rate of the current density). 

 

 

 

Figure S15. CV curves of (a)NiCo-LDH/CuNiCo-S/NF, (b) NiCo-LDH/ NiCo2S4/NF, (c) 

CuNiCo-S/NF, (d) NiCo2S4/NF, (e)NiCo-LDH/NF and (f) NF electrocatalysts at scan rates 

from 20 to 100 mV·s-1. 
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Figure S16. The relationship curves between current density and scan rate of 

NiCo-LDH/CuNiCo-S/NF, NiCo-LDH/NiCo2S4/NF, CuNiCo-S/NF, NiCo2S4/NF, 

NiCo-LDH/NF, and NF (the values shown in this graph indicate the Cdl of catalysts). 

 

Figure S17. XRD pattern of NiCo-LDH/CuNiCo-S/NF after the test. 
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Figure S18. Schematic diagram of the gas production from two half-reactions during 

overall water splitting and at the end of the overall water splitting process. 
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Table S1. M3+/M2+ intensity ratio of NiCo-LDH/CuNiCo-S/NF and NiCo-LDH/NF. 

Catalysts         M3+/M2+ Co3+/Co2+ Ni3+/Ni2+ 

NiCo-LDH/CuNiCo-S/NF 1.003/1.000 0.652/1.000 

NiCo-LDH/NF 0.937/1.000 0.611/1.000 

Table S2. Comparison of OER performances of NiCo-LDH/CuNiCo-S/NF and 

NiCo-LDH/NiCo2S4/NF electrocatalysts with other non-noble electrocatalysts in 1.0 M 

KOH or NaOH. 

Catalysts η50 η100 

Tafel 

slope(mV·dec-1) 

Electrolyte Reference 

NiCo-LDH/CuNiCo-S/NF 270 310 57.7 1.0 M KOH This work 

NiCo-LDH/NiCo2S4/NF 290 362 144.1 1.0 M KOH This work 

Ni2V-MOFs@NF 287 314 38.1 1.0 M KOH 2 

Ni-MOFs@NF 371 406 124.5 1.0 M KOH 2 

NF@NiC 353  54 1.0 M KOH 3 

Co-MOF/NF 311  77 1.0 M KOH 4 

MIL-53(FeNi)/NF 233 244 31.3 1.0 M KOH 5 

NiOX/NiCo2O4/Co3O4 483  79 1.0 M NaOH 6 

NiCo2S4/NF 371  91 1.0 M NaOH 7 
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Table S3. Comparison of HER performances of NiCo-LDH/CuNiCo-S/NF and 

NiCo-LDH/NiCo2S4/NF electrocatalysts with other non-noble electrocatalysts in 1.0 M 

KOH. 

Catalysts η10 η50 η100 

Tafel 

slope(mV·dec-1) 

Electrolyte Reference 

NiCo-LDH/CuNiCo-S/NF 93 163 195 62.9 1.0 M KOH This work 

NiCo-LDH/NiCo2S4/NF 105 180 220 96.8 1.0 M KOH This work 

Ni2V-MOFs@NF 89 197 235 98.3 1.0 M KOH 2 

Ni-MOFs@NF 126 266 314 122.5 1.0 M KOH 2 

NF@NiC 37   57 1.0 M KOH 3 

Ni3S2@NiV-LDH/NF 126   90 1.0 M KOH 8 

Co@N-CNT/NF 74 150  84 1.0 M KOH 9 

NiCoSe MNSN/NF 85   52 1.0 M KOH 10 

P8.6-Co3O4 /NF 97   86 1.0 M KOH 11 

 

Table S4. The Cdl values of different catalysts 

Catalysts NiCo-LDH/CuNiCo-S/NF NiCo-LDH/NiCo2S4/NF CuNiCo-S/NF NiCo2S4/NF NiCo-LDH/NF NF 

Cdl(mF∙cm-2) 80.36 55.54 72.05 49.86 2.64 1.82 
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Table S5. Comparison of two electrode water splitting cell voltage of 

NiCo-LDH/CuNiCo-S/NF electrocatalyst with other non-noble bifunctional electrocatalysts 

in 1.0 M KOH. 

Catalysts Cell voltage(V) J/mA·cm-2 Electrolyte Reference 

NiCo-LDH/CuNiCo-S/NF 1.59 10 1.0 M KOH This work 

FeSe2/NF 1.73 10 1.0 M KOH 12 

MnCo2O4@Ni2P 1.63 10 1.0 M KOH 13 

p-NiSe/NGr-CC 1.69 10 1.0 M KOH 14 

CoP-N/Co foam 1.61 10 1.0 M KOH 15 

Co1Mn1CH/NF 1.68 10 1.0 M KOH 16 

Cu3N-CuO 1.62 10 1.0 M KOH 17 

CoP-HS 1.61 10 1.0 M KOH 18 
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