Co-doped amorphous NiMoS⁴ modified with rGO for high-rate and

long-cycle stability of hybrid supercapacitor

Yuchen Lu,^a Bingji Huang,^a Jingjing Yuan^{*a}, Yifan Qiao,^a Wenyao Zhang,^b Guangyu He,^a

Haiqun Chen*^a

(a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced

Catalysis and Green Manufacturing Collaborative Innovation Centre, Changzhou University,

Changzhou, Jiangsu Province 213164, China;

bKey Laboratory for Soft Chemistry and Functional Materials of Ministry of Education,

Nanjing University of Science and Technology, Nanjing, 210094, China)

*Jingjing Yuan. E-mail: yuanjj@cczu.edu.cn *Haiqun Chen. E-mail: chenhq@cczu.edu.cn

1. Experimental section

1.1 Materials

 $(NH_4)_2$ S solution (16~20%), NH₃·H₂O (30~33%), $(NH_4)_6M_0T_2Q_4$ ·4H₂O, Ni(NO₃)₂·6H₂O, $Co(NO₃)₂·6H₂O$, concentrated H₂SO₄ (95~98%), KMnO₄, KOH and polytetrafluoroethylene (PTFE) were purchased from Sinopharm Chemical Reagent Co., Ltd (China). Needle Coke (carbon content ≥ 98% and ash content \leq 0.8%) was purchased from Jinzhou Petrochemical Co., Ltd (China). All reagents and solvents were of analytical grade and used as received.

1.2 Preparation of GO

Graphite oxide (GO) is prepared by a modified Hummers method.

1.3 **Preparation** of $(NH_4)_2MOS_4$

The preparation method of $(NH₄)₂ MoS₄$ has been improved on the basis of the work of our group¹. 19.6 g of $(NH_4)_{6}M_9$ Q_{24} $4H_2O$ were dissolved in 50 mL of ammonia water, and the pH of the ammonia water was adjusted to 9 using NH₃·H₂O. The solution was stirred in a water bath at 65 °C for 1 h after $340 \text{ mL of (NH}_4)_2$ S solution was added. Following this, the solution was crystallized in an ice-water bath at 0 °C for 1 h. The resulting material was washed with deionized water and vacuum-dried for 12 h at 60 $\rm{^{\circ}C}$ to give (NH₄)₂MoS₄.

1.4 Preparation of Ni1-xCoxMoS4/rGO composite

The preparation process taking $Ni_{0.7}Co_{0.3}MoS_4/rGO$ as an example is as follows: 0.13 g of $(NH_4)_2MoS_4$ was dissolved in 20 mL of deionized water in a 60 °C water bath. At the same time, 0.102 g of $Ni(NO₃)₂·6H₂O$ and 0.044 g of $Co(NO₃)₂·6H₂O$ were added to 40 mL of GO dispersion with 16 mg dispersed in it, stirred at a constant speed for 10 min, and then sonicated for 20 min. Then the cooled (NH4)2MoS⁴ solution was slowly added dropwise to the above dispersion, stirred at a constant speed for 30 min, and reacted at 120 °C for 12 h. The samples were centrifuged three times with deionized water and then freeze-dried to obtain a black powder sample. A series of $Ni_{1-x}Co_xMoS_4/FGO$ (x=0, 0.3, 0.5, 0.7 and 1) composites were prepared by adjusting the molar ratio of nickel-cobalt metal salts. For comparison, NiMoS₄ and Ni_{0.7}Co_{0.3}MoS₄ were prepared under the same conditions without adding GO.

1.5 Preparation of needle coke oxide (NCO)

1 g of the needle coke (NC) was slowly added to a beaker containing 25 mL of concentrated H_2SO_4 under ice-water bath, and stirred for 1 h. Then 3 g of KMnO₄ was slowly added in an ice-water bath and kept stirring for 12 h at room temperature. After that, 60 mL of deionized water was slowly added to the above mixture, stirring for 12 h at 60 °C. Finally, the product was rinsed to neutrality with deionized water and dried at 60 °C in oven, named as NCO.

1.6 Materials characterization

The crystalline phase was investigated by powder X-ray diffraction (XRD, Bruker D8 Advance with Cu Kα radiation, $\lambda = 0.15418$ nm). The specific surface area was obtained from the N₂ adsorptiondesorption isotherms and calculated by the Brunauer-Emmett-Teller method (BET, ASAP2460). The chemical species and structure of samples were examined by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) and Fourier transform infrared spectroscopy (FT-IR, Nicolet Avatar 370). The morphology of samples was observed by field-emission scanning electron microscopy (FESEM, Zeiss Supra 55) equipped with an energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM, JEOL JEM-2100).

1.7 Electrochemical measurements

Electrochemical studies were conducted using three-electrode and two-electrode systems. Acetylene black and polytetrafluoroethylene (PTFE) were used as the conductive component and binder, respectively. The active material, acetylene black, and PTFE were uniformly mixed in an 8:1:1 mass ratio, and the resulting slurry was uniformly coated on a porous NF substrate with a 1 cm×1 cm area. The mass of the active ingredient is approximately 1.2 mg. As the electrolyte, a KOH solution of 6 mol L⁻¹ was used. The platinum rod and the Hg/HgO electrode serve as the counter and reference electrodes in the three-electrode test, respectively. For the two-electrode test, a CR2032 battery box was used, and glass fiber filter paper was used as a separator to construct a two-electrode symmetrical button capacitor. The cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests of the samples were performed using the CHI 760E electrochemical workstation of Shanghai Chenhua Company. All electrochemical tests were performed at room temperature.

The specific capacitance C (Cg^{-1}) of the three-electrode system was calculated using the equation²:

$$
\frac{I\Delta t}{C=m} \tag{1}
$$

where *m* is the weight of the active material, *Δt* is the discharge duration, *I* is the discharge current.

The following equations are used to compute the power density P (W·kg⁻¹) and energy density E $(Wh·kg⁻¹)$ of the HSC³:

$$
\frac{CAV}{E} = 7.2\tag{2}
$$

$$
\frac{3600E}{P} = \frac{3t}{4}
$$
 (3)

where *C* represents the specific capacitance of the HSC (C·g-1), and *ΔV* and *Δt* are equivalent to those in equations (1).

Fig. S1 XRD spectra of NiMoS₄ and standard card

Fig. S2 The EDS spectra of $Ni_{0.7}Co_{0.3}MoS₄/rGO$ (the inset shows the Ni, Co, Mo and S elemental

mappings).

Fig. S3 (a) Amplified Raman spectra of GO, RGO and $\text{Ni}_{0.7}\text{Co}_{0.3}\text{MoS}_{4}/\text{rGO}$ from 2450 cm⁻¹ to

3000 cm⁻¹, (b) Amplified Raman spectra of NiMoS₄ and Ni_{0.7}Co_{0.3}MoS₄/rGO from 500 cm⁻¹ to 1000

Fig. S4 FT-IR spectra of NiMoS₄, NiMoS₄/rGO and Ni_{0.7}Co_{0.3}MoS₄/rGO

Fig. S4 clearly shows that rGO has weak absorption bands at 1630, 1403, 1150 and 1098 cm⁻¹, which is caused by functional groups such as -OH, -O and -OOH on the surface.⁴ In addition, the tensile vibration peaks of Ni-S and Mo-S appeared at 760 and 631 cm⁻¹ respectively.⁵ With the introduction of Co, the Ni-S and Mo-S peak intensities of the $Ni_{0.7}Co_{0.3}MoS₄/rGO$ curve are also weakened. These results indicate that $NiMoS₄$ and $Ni_{0.7}Co_{0.3}MoS₄/rGO$ were successfully prepared.

cm-1

Fig. S5 (a) XPS survey spectrum of NiMoS₄/rGO. Core XPS spectrum of (b) C 1s, (c) Ni 2p, (d) Mo

3d and (e) S 2p XPS spectra of NiMoS4/rGO

The Ni 2p spectrum of NiCoMoS₄/rGO can be fitted into the satellite peaks (862.7 and 882.0 eV), corresponding to Ni^{3+} (879.7 and 857.1 eV) and Ni^{2+} (875.4 and 853.8 eV) characteristic peaks. The above data can prove that compared with $NiMoS₄/rGO$, the Ni characteristic peaks of $Ni_{0.7}Co_{0.3}MoS_4/rGO$ generally have obvious red shift.

Fig. S6 CV (a) and GCD (b) curves of $\text{Ni}_{0.7}\text{Co}_{0.3}\text{MoS}_4$ and $\text{Ni}_{0.7}\text{Co}_{0.3}\text{MoS}_4/\text{rGO}$.

Fig. S7 GCD curves of NCO in different current density.

Table S1 Comparison of electrochemical performance of $\rm Ni_{0.7}Co_{0.3}MoS_4/rGO$ (three-electrode

Electrode material	Specific capacity	References
$Ni0.7Co0.3MoS4/rGO$	509.8 $C \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	This work
Amorphous CoMoS ₄	396.6 $C \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	6
Amorphous structured NiMoS ₄ -rGO	500 $C \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	τ
$NiCo2S4$ nanotube	397 C ·g ⁻¹ at 1 A·g ⁻¹	$\,$ 8 $\,$
$NiCo2O4$ flowerlike nanostructure	361.9 $C \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	9
$NiCo2S4(a)MnO2 heterostructure$	286.4 $C \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	10
$NiCo2S4$ cubic octahedron	334 $C \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	11
rGO ₁₀₀ -CNT ₅₀ -Co ₃ S ₄	488.6 $C \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	12
$Ni3S4$ -MoS ₂ nano flower	490.8 $C \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	13
MOF-derived $Co9S8/carbon$	367 C ·g ⁻¹ at 1 A·g ⁻¹	14
$Co3O4$ -rGO	330 $C \cdot g^{-1}$ at 0.5 $A \cdot g^{-1}$	15

system) with reported transition metal-based sulfides electrode in literatures

Table S2 Rate performance of NiMoS₄/rGO, Ni_{0.7}Co_{0.3}MoS₄/rGO, Ni_{0.5}Co_{0.5}MoS₄/rGO,

Electrode	Capacitance	Capacitance	Capacitance
material	in $1 \mathbf{A} \cdot \mathbf{g}^{-1} (\mathbf{C} \cdot \mathbf{g}^{-1})$	in 20 $\mathbf{A} \cdot \mathbf{g}^{-1}(\mathbf{C} \cdot \mathbf{g}^{-1})$	retention $(\%)$
NiMoS ₄ /rGO	114.1	36	31
$\mathrm{Ni_{0}}$ ₇ $\mathrm{Co_{0}}$ ₃ $\mathrm{MoS_{4}}$ /rGO	509.8	260.3	51
Ni_{0} $\varsigma\mathrm{Co}_{0}$ $\varsigma\mathrm{MoS}_{4}/\mathrm{rGO}$	312	76.8	24.6
Ni_{0} 3Co _{0.7} MoS ₄ /rGO	140	34.6	24.7
CoMoS ₄ /rGO	370	23.8	6.4

 $Ni_{0.3}Co_{0.7}MoS₄/rGO$ and $CoMoS₄/rGO$

Reference

- 1. B. Huang, J. Yuan, Y. Lu, Y. Zhao, X. Qian, H. Xu, G. He and H. Chen, *Chem. Eng. J.*, 2022, 436.
- 2. B. Huang, D. Yao, J. Yuan, Y. Tao, Y. Yin, G. He and H. Chen, *J. Colloid Interface Sci.*, 2022, 606, 1652-1661.
- 3. H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. Xiao, Y. Zhang and Y. Li, *Advanced Energy Materials*, 2019, 9.
- 4. X. Zhao, M. Chen, H. Wang, L. Xia, M. Guo, S. Jiang, Q. Wang, X. Li and X. Yang, *Mater Sci Eng C Mater Biol Appl*, 2020, 116, 111221.
- 5. J. Xu, X. Yang, Y. Zou, L. Zhu, F. Xu, L. Sun, C. Xiang and J. Zhang, *J. Alloys Compd.*, 2022, 891.
- 6. X. Xu, Y. Song, R. Xue, J. Zhou, J. Gao and F. Xing, *Chem. Eng. J.*, 2016, 301, 266-275.
- 7. M. Wei, X. Wu, Y. Yao, S. Yu, R. Sun and C. Wong, *ACS Sustainable Chemistry & Engineering*, 2019, 7, 19779-19786.
- 8. H. Wang, M. Liang, Z. He, Z. Guo, Y. Zhao, K. Li, W. Song, Y. Zhang, X. Zhang, Y. Zhao and Z. Miao, *Current Applied Physics*, 2022, 35, 7-15.
- 9. H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia and H. Wan, *J. Power Sources*, 2014, 248, 28-36.
- 10. H. Chen, X. L. Liu, J. M. Zhang, F. Dong and Y. X. Zhang, *Ceram. Int.*, 2016, 42, 8909-8914.
- 11. S. Hussain, T. Liu, N. Aslam, Y. Zhang and S. Zhao, *Mater. Lett.*, 2017, 189, 21-24.
- 12. A. Mohammadi, N. Arsalani, A. G. Tabrizi, S. E. Moosavifard, Z. Naqshbandi and L. S. Ghadimi, *Chem. Eng. J.*, 2018, 334, 66-80.

13. W. Luo, G. Zhang, Y. Cui, Y. Sun, Q. Qin, J. Zhang and W. Zheng, *Journal of Materials Chemistry A*, 2017, 5, 11278-11285.

- 14. S. Zhang, D. Li, S. Chen, X. Yang, X. Zhao, Q. Zhao, S. Komarneni and D. Yang, *Journal of Materials Chemistry A*, 2017, 5, 12453-12461.
- 15. L. Xie, F. Su, L. Xie, X. Li, Z. Liu, Q. Kong, X. Guo, Y. Zhang, L. Wan, K. Li, C. Lv and C.

Chen, *ChemSusChem*, 2015, 8, 2917-2926.