Co-doped amorphous NiMoS₄ modified with rGO for high-rate and

long-cycle stability of hybrid supercapacitor

Yuchen Lu,^a Bingji Huang,^a Jingjing Yuan*^a, Yifan Qiao,^a Wenyao Zhang,^b Guangyu He,^a

Haiqun Chen*a

(aJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced

Catalysis and Green Manufacturing Collaborative Innovation Centre, Changzhou University,

Changzhou, Jiangsu Province 213164, China;

^bKey Laboratory for Soft Chemistry and Functional Materials of Ministry of Education,

Nanjing University of Science and Technology, Nanjing, 210094, China)

*Jingjing Yuan. E-mail: yuanjj@cczu.edu.cn *Haiqun Chen. E-mail: chenhq@cczu.edu.cn

1. Experimental section

1.1 Materials

 $(NH_4)_2S$ solution $(16\sim20\%)$, $NH_3\cdot H_2O$ $(30\sim33\%)$, $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$, $Ni(NO_3)_2\cdot 6H_2O$, $Co(NO_3)_2\cdot 6H_2O$, concentrated H_2SO_4 (95~98%), KMnO_4, KOH and polytetrafluoroethylene (PTFE) were purchased from Sinopharm Chemical Reagent Co., Ltd (China). Needle Coke (carbon content \geq 98% and ash content $\leq 0.8\%$) was purchased from Jinzhou Petrochemical Co., Ltd (China). All reagents and solvents were of analytical grade and used as received.

1.2 Preparation of GO

Graphite oxide (GO) is prepared by a modified Hummers method.

1.3 Preparation of (NH₄)₂MoS₄

The preparation method of $(NH_4)_2MoS_4$ has been improved on the basis of the work of our group¹. 19.6 g of $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ were dissolved in 50 mL of ammonia water, and the pH of the ammonia water was adjusted to 9 using $NH_3\cdot H_2O$. The solution was stirred in a water bath at 65 °C for 1 h after 340 mL of $(NH_4)_2S$ solution was added. Following this, the solution was crystallized in an ice-water bath at 0 °C for 1 h. The resulting material was washed with deionized water and vacuum-dried for 12 h at 60 °C to give $(NH_4)_2MoS_4$.

1.4 Preparation of Ni_{1-x}Co_xMoS₄/rGO composite

The preparation process taking Ni_{0.7}Co_{0.3}MoS₄/rGO as an example is as follows: 0.13 g of (NH₄)₂MoS₄ was dissolved in 20 mL of deionized water in a 60 °C water bath. At the same time, 0.102 g of Ni(NO₃)₂·6H₂O and 0.044 g of Co(NO₃)₂·6H₂O were added to 40 mL of GO dispersion with 16 mg dispersed in it, stirred at a constant speed for 10 min, and then sonicated for 20 min. Then the cooled (NH₄)₂MoS₄ solution was slowly added dropwise to the above dispersion, stirred at a constant speed for 30 min, and reacted at 120 °C for 12 h. The samples were centrifuged three times with deionized water and then freeze-dried to obtain a black powder sample. A series of Ni_{1-x}Co_xMoS₄/rGO (x=0, 0.3, 0.5, 0.7 and 1) composites were prepared by adjusting the molar ratio of nickel-cobalt metal salts. For comparison, NiMoS₄ and Ni_{0.7}Co_{0.3}MoS₄ were prepared under the same conditions without adding GO.

1.5 Preparation of needle coke oxide (NCO)

1 g of the needle coke (NC) was slowly added to a beaker containing 25 mL of concentrated H₂SO₄ under ice-water bath, and stirred for 1 h. Then 3 g of KMnO₄ was slowly added in an ice-water bath and kept stirring for 12 h at room temperature. After that, 60 mL of deionized water was slowly added to the above mixture, stirring for 12 h at 60 °C. Finally, the product was rinsed to neutrality with deionized water and dried at 60 °C in oven, named as NCO.

1.6 Materials characterization

The crystalline phase was investigated by powder X-ray diffraction (XRD, Bruker D8 Advance with Cu K α radiation, $\lambda = 0.15418$ nm). The specific surface area was obtained from the N₂ adsorption-

desorption isotherms and calculated by the Brunauer-Emmett-Teller method (BET, ASAP2460). The chemical species and structure of samples were examined by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) and Fourier transform infrared spectroscopy (FT-IR, Nicolet Avatar 370). The morphology of samples was observed by field-emission scanning electron microscopy (FESEM, Zeiss Supra 55) equipped with an energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM, JEOL JEM-2100).

1.7 Electrochemical measurements

Electrochemical studies were conducted using three-electrode and two-electrode systems. Acetylene black and polytetrafluoroethylene (PTFE) were used as the conductive component and binder, respectively. The active material, acetylene black, and PTFE were uniformly mixed in an 8:1:1 mass ratio, and the resulting slurry was uniformly coated on a porous NF substrate with a 1 cm×1 cm area. The mass of the active ingredient is approximately 1.2 mg. As the electrolyte, a KOH solution of 6 mol L⁻¹ was used. The platinum rod and the Hg/HgO electrode serve as the counter and reference electrodes in the three-electrode test, respectively. For the two-electrode test, a CR2032 battery box was used, and glass fiber filter paper was used as a separator to construct a two-electrode symmetrical button capacitor. The cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests of the samples were performed using the CHI 760E electrochemical workstation of Shanghai Chenhua Company. All electrochemical tests were performed at room temperature.

The specific capacitance $C(C \cdot g^{-1})$ of the three-electrode system was calculated using the equation²:

$$\underbrace{I\Delta t}_{C=m}$$
(1)

where *m* is the weight of the active material, Δt is the discharge duration, *I* is the discharge current.

The following equations are used to compute the power density P (W·kg⁻¹) and energy density E (Wh·kg⁻¹) of the HSC³:

$$\frac{C\Delta V}{E=7.2}$$
(2)

$$P=\frac{3600E}{\Delta t}$$
(3)

where *C* represents the specific capacitance of the HSC ($C \cdot g^{-1}$), and ΔV and Δt are equivalent to those in equations (1).

Fig. S1 XRD spectra of NiMoS₄ and standard card

Fig. S2 The EDS spectra of Ni_{0.7}Co_{0.3}MoS₄/rGO (the inset shows the Ni, Co, Mo and S elemental

mappings).

Fig. S3 (a) Amplified Raman spectra of GO, RGO and Ni_{0.7}Co_{0.3}MoS₄/rGO from 2450 cm⁻¹ to

3000 cm⁻¹, (b) Amplified Raman spectra of NiMoS₄ and Ni_{0.7}Co_{0.3}MoS₄/rGO from 500 cm⁻¹ to 1000

Fig. S4 FT-IR spectra of NiMoS₄, NiMoS₄/rGO and Ni_{0.7}Co_{0.3}MoS₄/rGO

Fig. S4 clearly shows that rGO has weak absorption bands at 1630, 1403, 1150 and 1098 cm⁻¹, which is caused by functional groups such as -OH, -O and -OOH on the surface.⁴ In addition, the tensile vibration peaks of Ni-S and Mo-S appeared at 760 and 631 cm⁻¹ respectively.⁵ With the introduction of Co, the Ni-S and Mo-S peak intensities of the Ni_{0.7}Co_{0.3}MoS₄/rGO curve are also weakened. These results indicate that NiMoS₄ and Ni_{0.7}Co_{0.3}MoS₄/rGO were successfully prepared.

cm⁻¹

Fig. S5 (a) XPS survey spectrum of NiMoS₄/rGO. Core XPS spectrum of (b) C 1s, (c) Ni 2p, (d) Mo

3d and (e) S 2p XPS spectra of NiMoS₄/rGO

The Ni 2p spectrum of NiCoMoS₄/rGO can be fitted into the satellite peaks (862.7 and 882.0 eV), corresponding to Ni³⁺ (879.7 and 857.1 eV) and Ni²⁺ (875.4 and 853.8 eV) characteristic peaks. The above data can prove that compared with NiMoS₄/rGO, the Ni characteristic peaks of Ni_{0.7}Co_{0.3}MoS₄/rGO generally have obvious red shift.

Fig. S6 CV (a) and GCD (b) curves of Ni_{0.7}Co_{0.3}MoS₄ and Ni_{0.7}Co_{0.3}MoS₄/rGO.

Fig. S7 GCD curves of NCO in different current density.

Table S1 Comparison of electrochemical performance of Ni_{0.7}Co_{0.3}MoS₄/rGO (three-electrode

Electrode material	Specific capacity	References
Ni _{0.7} Co _{0.3} MoS ₄ /rGO	509.8 C·g ⁻¹ at 1 A·g ⁻¹	This work
Amorphous CoMoS ₄	396.6 C·g ⁻¹ at 1 A·g ⁻¹	6
Amorphous structured NiMoS4-rGO	500 C·g ⁻¹ at 1 A·g ⁻¹	7
$NiCo_2S_4$ nanotube	397 C·g ⁻¹ at 1 A·g ⁻¹	8
NiCo ₂ O ₄ flowerlike nanostructure	361.9 C·g ⁻¹ at 1 A·g ⁻¹	9
$NiCo_2S_4@MnO_2$ heterostructure	286.4 C·g ⁻¹ at 1 A·g ⁻¹	10
NiCo ₂ S ₄ cubic octahedron	334 C·g ⁻¹ at 1 A·g ⁻¹	11
rGO_{100} -CNT ₅₀ -Co ₃ S ₄	488.6 C·g ⁻¹ at 1 A·g ⁻¹	12
Ni_3S_4 -MoS ₂ nano flower	490.8 C·g ⁻¹ at 1 A·g ⁻¹	13
MOF-derived Co ₉ S ₈ /carbon	367 C·g ⁻¹ at 1 A·g ⁻¹	14
Co ₃ O ₄ -rGO	330 C·g ⁻¹ at 0.5 A·g ⁻¹	15

system) with reported transition metal-based sulfides electrode in literatures

 $Table \ S2 \ Rate \ performance \ of \ NiMoS_4/rGO, \ Ni_{0.7}Co_{0.3}MoS_4/rGO, \ Ni_{0.5}Co_{0.5}MoS_4/rGO, \ Ni_{0.5}MoS_4/rGO,$

Electrode	Capacitance	Capacitance	Capacitance
material	in 1 A·g ⁻¹ (C·g ⁻¹)	in 20 $A \cdot g^{-1}(C \cdot g^{-1})$	retention (%)
NiMoS ₄ /rGO	114.1	36	31
$Ni_{0.7}Co_{0.3}MoS_4/rGO$	509.8	260.3	51
$Ni_{0.5}Co_{0.5}MoS_4/rGO$	312	76.8	24.6
$Ni_{0.3}Co_{0.7}MoS_4/rGO$	140	34.6	24.7
CoMoS ₄ /rGO	370	23.8	6.4

Ni_{0.3}Co_{0.7}MoS₄/rGO and CoMoS₄/rGO

Reference

- 1. B. Huang, J. Yuan, Y. Lu, Y. Zhao, X. Qian, H. Xu, G. He and H. Chen, Chem. Eng. J., 2022, 436.
- B. Huang, D. Yao, J. Yuan, Y. Tao, Y. Yin, G. He and H. Chen, *J. Colloid Interface Sci.*, 2022, 606, 1652-1661.
- 3. H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. Xiao, Y. Zhang and Y. Li, *Advanced Energy Materials*, 2019, 9.
- 4. X. Zhao, M. Chen, H. Wang, L. Xia, M. Guo, S. Jiang, Q. Wang, X. Li and X. Yang, *Mater Sci Eng C Mater Biol Appl*, 2020, 116, 111221.
- J. Xu, X. Yang, Y. Zou, L. Zhu, F. Xu, L. Sun, C. Xiang and J. Zhang, J. Alloys Compd., 2022, 891.
- 6. X. Xu, Y. Song, R. Xue, J. Zhou, J. Gao and F. Xing, Chem. Eng. J., 2016, 301, 266-275.
- M. Wei, X. Wu, Y. Yao, S. Yu, R. Sun and C. Wong, ACS Sustainable Chemistry & Engineering, 2019, 7, 19779-19786.

- H. Wang, M. Liang, Z. He, Z. Guo, Y. Zhao, K. Li, W. Song, Y. Zhang, X. Zhang, Y. Zhao and Z.
 Miao, *Current Applied Physics*, 2022, 35, 7-15.
- 9. H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia and H. Wan, J. Power Sources, 2014, 248, 28-36.
- 10. H. Chen, X. L. Liu, J. M. Zhang, F. Dong and Y. X. Zhang, Ceram. Int., 2016, 42, 8909-8914.
- 11. S. Hussain, T. Liu, N. Aslam, Y. Zhang and S. Zhao, Mater. Lett., 2017, 189, 21-24.
- 12. A. Mohammadi, N. Arsalani, A. G. Tabrizi, S. E. Moosavifard, Z. Naqshbandi and L. S. Ghadimi, *Chem. Eng. J.*, 2018, 334, 66-80.

13. W. Luo, G. Zhang, Y. Cui, Y. Sun, Q. Qin, J. Zhang and W. Zheng, *Journal of Materials Chemistry A*, 2017, 5, 11278-11285.

- S. Zhang, D. Li, S. Chen, X. Yang, X. Zhao, Q. Zhao, S. Komarneni and D. Yang, *Journal of Materials Chemistry A*, 2017, 5, 12453-12461.
- 15. L. Xie, F. Su, L. Xie, X. Li, Z. Liu, Q. Kong, X. Guo, Y. Zhang, L. Wan, K. Li, C. Lv and C.

Chen, ChemSusChem, 2015, 8, 2917-2926.