Mechanistic inference on the roles of oxygenic functional groups to

activate peroxymonosulfates in graphene for advanced oxidation

Xuechun Zhou^{a,b}, Gengping Wan^{a,*}, Guoqing Zhao^{a,b}, Maofan Zhou^a, Guizhen Wang^{a,b,*} ^aKey Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Haikou 570228, China. ^bSchool of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China

*Corresponding authors.

Tel: +86-137 0040 8893. *E-mail:* wangguizhen0@hotmail.com (Guizhen Wang); wangengping001@163.com(Gengping Wan).

Based on the reported studies, the kinetic of BPA degradation was evaluated by pseudofirst order kinetics given in Eq (1).

$$In\frac{C_t}{C_0} = -k_{obs}t$$

Where C_t is the BPA concentration at actual time (t), C_0 is the initial BPA concentration,

 k_{obs} is the rate constant and k_{SA} is the surface area normalized first order rate constant.

Fig. S1. Comparison of the k_{SA} values for various materials.

Fig. S2. The zeta potential of G1000 (a) and the adsorption of BPA (b) at different pH values. Reaction conditions: [BPA] = 19 mg L-1, [catalyst] = 0.1 g L-1, T = 298 K.

Fig. S3. EPR measurements with the addition of DMPO after 2 min and 7 min in the G1000/PMS system.

Fig. S4. FTIR spectra of G600 in different systems.

Fig. S5. High-resolution XPS spectra of C 1s of G250, G600 and G1000 before and after reactions.

Fig. S6. The correlation between oxygen species content with rate constant.

Fig. S7. (a)~(f) Mass spectrum of BPA degraded intermediates identified by LC-MS. Experimental conditions: [PMS] = 2.0 mM, [BPA] = 19 mg/L, [Catalyst] = 0.10 g/L, T = 298 K.

No.	Tentative structure	Molecular formula	Molecular weight (m/z)
1	ноОн	$C_{15}H_{16}O_2$	228
2	но-	C ₁₄ H ₂₂ O	206
3	но	C ₁₄ H ₂₂ O	206
4		C ₁₃ H ₁₀ O	182
5	но-Он	$C_9H_{12}O_2$	152
6	но	$C_9H_{12}O_2$	152
7	но-Он	$C_8H_8O_3$	152
8	но	$C_9H_{12}O$	136

_

Fig. S9. (a) CVs of G250, G600 and G1000 at the rang from -0.9 to 0.9 V vs. Ag/AgCl; (b) LSV curves of G250, G600 and G1000.