Ultra-small RuO₂/NHC nanocrystal electrocatalysts with

efficient water oxidation activities in acidic media

Yujie Du^a, Kaiyang Zhang^a, Rui Yao^a, Yun Wu^a, Qiang Zhao^a, Jinping Li^a, Guang Liu^a*

Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.

Fig S1. Simple synthesis flow diagram of electrocatalyst RuO₂/NHC.

Fig S2. SEM of a) NPG; b) NHC⁰; c) NHC¹; d) NHC²; e) NHC⁴ and f) TEM of

 RuO_2/NHC^3 .

Fig S3. Nitrogen adsorption-desorption isotherms of different supporter samples.

Fig S4. a) SEM of NHC³ and b) TEM image of NHC³.

Fig S5. TEM of RuO_2/NHC^3 at different multiples.

Fig S6. a) SEM of RuO_2 ; b) TEM image of RuO_2 ; c) particle size image of RuO_2 and d) HR-TEM image of RuO_2 .

Fig S7. TGA plot of precursor of RuO_2/NHC in 20 mL/min air atmosphere with temperature ramping 10 °C/min.

Fig S8. TGA plot of RuO_2/NHC^3 and NHC^3 in 20 mL/min air atmosphere with temperature ramping 10 °C/min.

Fig S9. XPS survey spectra of NHC³, RuO_2/NHC^3 and RuO_2 electrocatalysts.

Fig S10. High resolution XPS spectra of N 1s of electrocatalysts RuO_2/NHC^3 and NHC^3 .

Fig S11. EDS analysis for RuO_2/NHC^3 .

Fig S12. Polarization curves of RuO_2/NHC^0 , RuO_2/NHC^1 , RuO_2/NHC^2 , RuO_2/NHC^3 , RuO_2/NHC^4 in 0.5 M H₂SO₄.

Fig S13. CV curves of a) RuO_2/NHC^0 , b) RuO_2/NHC^1 , c) RuO_2/NHC^2 and d) RuO_2/NHC^4 e) Current density as a function of the scan rate for different samples for OER.

Fig S14. Polarization curves of RuO_2/NHC^3 -300 °C, RuO_2/NHC^3 -400 °C, RuO_2/NHC^3 -500 °C, RuO_2/NHC^3 -600 °C.

Fig S15. XRD pattern of RuO_2/NHC^3 -300 °C, RuO_2/NHC^3 -400 °C, RuO_2/NHC^3 -500 °C, RuO_2/NHC^3 -600 °C.

Fig S16. CV curves of a) RuO_2/NHC^3 -300 °C, b) RuO_2/NHC^3 -500 °C, c) RuO_2/NHC^3 -600 °C and d) Current density as a function of the scan rate for different samples for OER.

Fig S17. CVs measured at different scan rates from 10 to 120 mV/s of (a) RuO_2/NHC^3 and (b) RuO_2 .

Fig S18. a) Ru 3p, b) O 1s, c) C1s and d) N 1s XPS spectra of RuO_2/NHC^3 after long time chronopotentiometry test.

Fig S19. a) SEM, b-c) TEM image and d) HR-TEM image of RuO_2/NHC^3 after

long time chronopotentiometry test.

Table S1. BET surface area and overpotential at 10 mA/cm² of various samples.

Sample	S _{BET} (m²/g)	Sample	η ₁₀ (mV)
NPG	4	RuO ₂ /NPG	NA
NHC ⁰	468	RuO ₂ /NHC ⁰	344
NHC ¹	1563	RuO ₂ /NHC ¹	202
NHC ²	1894	RuO ₂ /NHC ²	185
NHC ³	2107	RuO ₂ /NHC ³	186
NHC ⁴	2998	RuO ₂ /NHC ⁴	215

Table S2. The C_{dl} and ECSA of RuO_2/NHC^0 , RuO_2/NHC^1 , RuO_2/NHC^2 , RuO_2/NHC^3 and RuO_2/NHC^4 for OER.

Sample	C _{dl} (mF/cm ²)	ECSA (cm ² /mg)
RuO ₂ /NHC ⁰	46.3	1157.5
RuO ₂ /NHC ¹	60.3	1507.5
RuO ₂ /NHC ²	62.6	1565
RuO ₂ /NHC ³	69.8	1745
RuO ₂ /NHC ⁴	55.3	1382.5

Table S3. The C_{dl} and ECSA of RuO_2/NHC^3 -300 °C, RuO_2/NHC^3 -400 °C, RuO_2/NHC^3 -500 °C and RuO_2/NHC^3 -600 °C for OER.

Sample	C _{dl} (mF/cm ²)	ECSA (cm ² /mg)
RuO ₂ /NHC ³ -300 °C	14.7	367.5
RuO ₂ /NHC ³ -400 °C	69.8	1745
RuO ₂ /NHC ³ -500 °C	46.9	1172.5
RuO ₂ /NHC ³ -600 °C	23.1	577.5

electrocatalyst	R _s (ohm)	R _{ct} (ohm)
RuO ₂ /NHC ³	1.60	0.4189
RuO ₂	1.898	5.04
NHC ³	19.98	1.716

Table S4. Parameters of R_s and R_{ct} acquired through fitting EIS spectra.

representative literature under acidic electrolyte.			
	Table S5. Comparison of the Ru-based electrocatalysts reported in		

Catalysts	Electrolyte	η(mV) at 10 mA/cm ²	Stability	Ref
RuO ₂ /NHC ³	0.5 M H ₂ SO ₄	186	27 h at 10 mA/cm ²	This work
RuCo@NG/N-GNs	$0.5 \text{ M} \text{H}_2\text{SO}_4$	209	10 h at 10 mA/cm ²	1
1D-RuO ₂ -CN _x	0.5 M H ₂ SO ₄	250	lost ~32% current after 55 h of scan	2
IrO ₂ -BN-rGO	0.5 M H ₂ SO ₄	300	45 h at 10 mA/cm ² and 5 mA/cm ²	3
NaRuO ₂ nanosheets	0.1 M HClO ₄	255	6 h at 1 mA/cm ²	4
Cu-doped RuO ₂	$0.5 \mathrm{~M~H_2SO_4}$	188	8 h at 10 mA/cm ²	5
a/c RuO ₂	0.1 M HClO ₄	205	60 h at 10 mA/cm ²	6
$Cr_{0.6}Ru_{0.4}O_2$	$0.5 \text{ M H}_2 \text{SO}_4$	178	10 h at 10 mA/cm ²	7
RuO ₂ /(Co, Mn) ₃ O ₄	0.5 M H ₂ SO ₄	270	24 h at 10 mA/cm ²	8
Sn-RuO ₂ @NPC	0.5 M H ₂ SO ₄	178	150 h at 10 mA/cm ²	9
COOH-MWNTs	$0.5 \text{ M H}_2 \text{SO}_4$	265	10 h at 10 mA/cm ²	10
2D D-RuO ₂ /G	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	169	2000 cycles	11
RuB ₂	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	223	10 h at 10 mA/cm ²	12
Ru@IrO _x	0.05 M H ₂ SO ₄	282	24h at 1.55 V	13
RuMn NSBs	0.5 M H ₂ SO ₄	196	125 h at 10 mA/cm ² for RuMn NSBs-250 RuMn NSBs-300	14
3D Ru/RuO ₂ @N- rGO	0.5 M H ₂ SO ₄	234	10 h at10 mA/cm ² in 1.0 M KOH for Ru/RuO ₂ @N- rGO Ru/RuO ₂ @N-rGO	15
Zn-doped RuO ₂	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	206	30 h at 10 mA/cm ²	16

Reference

- 1 M. Zhang, H. Li, J. Chen, L. Yi, P. Shao, C.-Y. Xu and Z. Wen, *Chem. Eng. J.*, 2021, **422**, 13007.
- 2 T. Bhowmik, M. K. Kundu and S. Barman, ACS Appl. Mater. Interfaces, 2016, 8, 28678-28688.
- 3 P. Joshi, R. Yadav, M. Hara, T. Inoue, Y. Motoyama and M. Yoshimura, *J. Mater. Chem. A*, 2021, **9**, 9066-9080.
- 4 S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel, L. M. Schoop, F. Pielnhofer, C. Scheurer, K. Müller, U. Starke, K. Reuter and B. V. Lotsch, *Adv. Energy Mater.*, 2019, **9**, 1803795.
- 5 J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao, Z. Tian, G. Chen and L. Chen, Adv. Mater., 2018, **30**, 1801351.
- L. Zhang, H. Jang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu and J. Cho, *Angew. Chem. Int. Ed. Engl.*, 2021, 60, 18821-18829.
- 7 Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge and L. Chen, Nat. Commun, 2019, 10, 162.
- 8 S. Niu, X.-P. Kong, S. Li, Y. Zhang, J. Wu, W. Zhao and P. Xu, Appl. Catal. B, 2021, 297, 120442.
- 9 L. Qiu, G. Zheng, Y. He, L. Lei and X. Zhang, *Chem. Eng. J.*, 2021, **409**, 128155.
- 10 X. Zhang, W. Zhang, J. Dai, M. Sun, J. Zhao, L. Ji, L. Chen, F. Zeng, F. Yang, B. Huang and L. Dai, *InfoMat*, 2021, **4**, 12273.
- 11 Y. Li, Y. Wang, J. Lu, B. Yang, X. San and Z.-S. Wu, Nano Energy, 2020, 78, 105185.
- 12 D. Chen, T. Liu, P. Wang, J. Zhao, C. Zhang, R. Cheng, W. Li, P. Ji, Z. Pu and S. Mu, *ACS Energy Lett.*, 2020, **5**, 2909-2915.
- 13 J. Shan, C. Guo, Y. Zhu, S. Chen, L. Song, M. Jaroniec, Y. Zheng and S.-Z. Qiao, *Chem.*, 2019, **5**, 445-459.
- 14 L. Li, L. Bu, B. Huang, P. Wang, C. Shen, S. Bai, T. S. Chan, Q. Shao, Z. Hu and X. Huang, *Adv. Mater*, 2021, **33**, 2105308.
- 15 X. Gao, J. Chen, X. Sun, B. Wu, B. Li, Z. Ning, J. Li and N. Wang, *ACS Appl. Nano Mater.*, 2020, **3**, 12269-12277.
- 16 H. Zhang, B. Wu, J. Su, K. Zhao and L. Chen, *ChemNanoMat*, 2021, **7**, 117-121.