Electronic Supplementary Material (ESI) for Dalton Trans.

"Occurrence of slow relaxation of the magnetization in a family of copper(II)/manganese(II) quasi-isotropic complexes with different ground spin states."

Evangelos Pilichos,^a Mercè Font-Bardia,^b Albert Escuer,^{a,c*} Júlia Mayans, ^{a,c*}

^a Departament de Química Inorgànica i Orgànica, Secció Inorgànica, Martí i Franquès 1-11, Barcelona-08028, Spain.

^b Departament de Mineralogia, Cristal·lografia i Dipòsits Minerals, Universitat de Barcelona, Martí Franqués s/n, 08028 Barcelona (Spain) and Unitat de Difracció de R-X. Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB), Solé i Sabarís 1-3. 08028 Barcelona.

^c Institute of Nanoscience and Nanotecnology (IN²UB), Universitat de Barcelona.

1- IR spectra.

Fig, S1. IR spectra for 1-5.

2- Structural aspects.

Table S1. Crystal data and structure refinement for complexes 1 - 5.Fig. S2. Coordination environment for the Mn^{II} cation in complexes 2–5.Table S2. Relevant donor-acceptor distances (Å) and donor-H…acceptor angles for theH-bonds present in complexes 1, 3, 4 and 5.

3- Magnetic data.

Fig. S3. χ_M '' dependence of the transverse field for complexes 2 (top), 3 (middle) and 5 (bottom).

Fig. S4. Plot of $\ln(1/2\pi\nu)$ vs. T^{-1} from the χ_{M} ''(*T*) data for complexes **2**, **3** and **5**.

Fig. S5. $\chi_{\rm M}$ ''(*T*) for complexes 2, 3 and 5 showing the lower frequencies and high frequencies out-of-phase response.

Fig. S6. Cole-Cole plots for complexes 2, 3 and 5.

1- IR spectra.

Fig. S1. IR spectra for complexes **1** - **5**. Characteristic bands: st. C-H 3000-2800 cm⁻¹; N=C iminic ~1600 cm⁻¹; C-O st. ClO_4^- 1075 cm⁻¹; δClO_4^- 620 cm⁻¹. Stretching for the azido lignads for **4** and **5** appears between 2050-2100 cm⁻¹. **2***RR* and **2***SS* exhibit superimposable spectra and only one spectrum is shown.

2-Structural aspects.

	1	266	2 14-011	-	
	1		3-MeOH	4 -21VIEOH	5
Formula	$C_{21}H_{26}CICU$	$C_{101}H_{128}CI_8CU_4$	$C_{56}H_{66}CI_2Cu_3$	$C_{82}H_{100}CI_2Cu_4$	$C_{74}H_{80}CI_2Cu_4$
	N ₂ NaO ₉	Mn ₂ N ₈ O ₃₅	MnN ₆ O ₂₄	Mn ₂ N ₁₄ O ₂₈	$Mn_2N_{20}Na_2O_{26}$
FW	572.42	2661.75	1523.60 2164.69		2146.5
System	Monoclinic	Triclinic	Monoclinic Triclini		Triclinic
Space group	P21/c	P 1	P21/c	P-1	P-1
a/Å	8.0671(4)	12.2722(6)	15.4787(6)	9.876(1)	12.3500(6)
b/Å	21.2492(9)	14.5327(7)	22.7556(9)	14.787(2)	13.0272(7)
c/Å	14.0782(7)	17.2926(8)	17.7148(7)	16.663(2)	13.9308(7)
α /deg.	90	101.148(2)	90	73.292(5)	107.897(2)
ß/deg.	103.285(2)	100.531(2)	97.002(1)	83.822(5)	91.793(2)
γ∕deg.	90	111.062(2)	90	70.888(5)	94.147(2)
V∕ų	2348.7(2)	2714.5(2)	6193.1(4)	2201.8(5)	2123.9(2)
Ζ	4	1	4	1	1
Т, К	100(2)	100(2)	100(2)	100(2)	100(2)
<i>λ</i> (ΜοΚα), Å	0.71073	0.71073	0.71073	0.71073	0.71073
$ ho_{calc}$, g \cdot cm $^{-3}$	1.619	1.628	1.634	1.633	1.678
μ(MoKα),	1.118	1.279	1.389	1.376	1.435
mm ⁻¹					
Flack param.		0.02(1)			
R	0.0340	0.0481	0.0479	0.0490	0.0334
ω R ²	0.0718	0.1328	0.1094	0.1328	0.0889

 Table S1. Crystal data and structure refinement for complexes 1 - 5.

Fig. S2. Coordination environment for the Mn^{II} cation in complexes **2***SS***–5**. Dashed red bonds show the large contacts Mn-O_{alcoxo}. The ideal polyhedra (biapicated trigonal prism for **2***SS* and pentagonal bipyramid for **3-5** are shown in orange.

Table S2. Relevant donor-acceptor distances (Å) and donor-H \cdots acceptor angles for the H-bonds present in complexes 1, 3, 4 and 5. For 1 and 5 correspond to the intermolecular H-bonds that determines the 1D arrangement in the network whereas for 3 and 4 correspond to the intramolecular H-bonds between the central and the capping [CuL] fragments.

	D…A (Å)		D-H···A (deg.)			
Complex 1	O9…O5'	2.831(2)	О9-Н90⋯О5'	158.6(3)	Intermologular	
Complex 5	O8⋯N7'	2.843(2)	O8-H8O…N7'	166(2)	mermolecular	
Complex 3	013…09	2.955(4)	O13-H13B…O9	137(3)	-	
	O13…O10	2.806(3)	O13-H13B…O10	148(3)		
	013…011	2.752(3)	O13-H13A…O11	157(3)		
	O13…O12	2.975(4)	O13-H13A…O12	129(3)		
	O14…O1	3.024(4)	014-H14A…01	140(3)		
	O14…O2	2.762(4)	O14-H14A…O2	148(3)		
	O14…O3	2.809(3)	O14-H14B…O3	153(3)	Intramolecular	
	O14…O4	3.059(4)	O14-H14B…O4	132(3)		
Complex 4	09…05	2.963(3)	O9-H9B…O5	138(2)		
	O9…O6	2.820(2)	O9-H9B…O6	150(2)		
	O9…O7	2.872(3)	09-H9A····O7	135(3)		
	0908	2.971(3)	O9-H9A…O8	154(3)		

3-Magnetic data.

Fig. S3. χ_M '' dependence of the transverse field for complexes 2 (top), 3 (middle) and 5 (bottom).

Fig. S4. χ_{M} ''(*T*) for complexes **2**, **3** and **5** showing the lower frequencies (left) and temperature dependent high frequencies (right) out-of-phase response. For the intermediate range of frequencies maxima are not defined.

Fig. S5. Plot of $\ln(1/2\pi\nu)$ vs. T^{-1} from the χ_{M} ''(*T*) data for complexes **2** (red), **3** (green) and **5** (blue). The data is limited to the HF region for which the maxima of χ_{M} '' can be observed.

Fig. S6. Cole-Cole plots for complexes 2, 3 and 5. Solid lines show the best fit of the experimental data.