Supporting Information

Regulating the electronic and spin structure of endohedral metallofullerene: A case investigation on $Sc_3N@C_{80}$ and $Sc_3C_2@C_{80}$

Yongqiang Feng,*^a Yuzhu Hu,^a Tianmi Luo,^a Chengke Yuan,^a Wenjie Zhu,^a Mengting Gao^a and Xuemeng Huo^a

^a School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China

* Correspondence: fengyq@sust.edu.cn

Additional Figures

Figure S1. HPLC profile of the purified $Sc_3N@C_{80}$. Conditions: Buckyprep column (\emptyset 20 mm × 250 mm), 12 mL min⁻¹ toluene flow, 310 nm detection wavelength. Inset: MALDI-TOF mass spectroscopy of $Sc_3N@C_{80}$.

Figure S2. HPLC profile of the purified $Sc_3C_2@C_{80}$. Conditions: Buckyprep column (ø 20×250 mm), 12 mL min⁻¹ toluene flow, 310 nm detection wavelength. Inset: MALDI-TOF mass spectroscopy of $Sc_3C_2@C_{80}$.

Figure S3. HPLC profile of monoadduct of $Sc_3N@C_{80}$ -Gly. Conditions: Buckyprep-M column ($ø 20 \times 250$ mm), 12 mL min⁻¹ toluene flow, 310 nm detection wavelength. Inset: MALDI-TOF mass spectroscopy of $Sc_3N@C_{80}$ -Gly.

Figure S4. HPLC profiles of purified (a) Sc₃N@C₈₀-Cys (I) and (b) Sc₃N@C₈₀-Cys (II), inset showing the corresponding MALDI-TOF-MS data.

Figure S5. Two addition sites on the I_h -C₈₀ carbon cage.

Figure S6. COSY spectrum of Sc₃N@C₈₀-Cys (I) measured in CDCl₃ solution at 298 K.

Figure S7. CV curves of $Sc_3N@C_{80}$, $Sc_3N@C_{80}$ -Cys (I), $Sc_3N@C_{80}$ -Cys (II) and $Sc_3N@C_{80}$ -Gly (I) recorded in o-DCB solution containing 0.05 M TBAPF₆ with ferrocene as the internal standard, scan rate: 100 mV s⁻¹. The potentials were recorded against Ag/AgCl and were calibrated relative to Fc/Fc⁺ in the main text. The potential against Fc/Fc⁺ was equal to the half of the sum of oxidation peak potential and redox peak potential using E (Fc/Fc⁺) = 1/2 (E_{op} + E_{rp}).

Figure S8. (a) HPLC profile showing the separation process of the crude mixture of the Prato reaction of $Sc_3C_2@C_{80}$. HPLC profile of purified monoadduct of (b) $Sc_3C_2@C_{80}$ -Cys (I) and (c) $Sc_3C_2@C_{80}$ -Cys (II), inset: the corresponding MALDI-TOF mass spectroscopy. Conditions: Buckyprep column (\emptyset 20×250 mm), 12 mL min⁻¹ toluene flow, 310 nm detection wavelength.

Figure S9. UV-vis-NIR spectra of $Sc_3C_2@C_{80}$, $Sc_3C_2@C_{80}$ -Cys (I) and $Sc_3C_2@C_{80}$ -Cys (II).