Electronic Supplementary Information

Effect of flexible chain length of the dimetal subunit on the formation of 1D coordination polymer to molecular rectangle

Alisha Gogia^a, Sadhika Khullar^{*b}, Alokananda Chanda^a and Sanjay K. Mandal^{*a}

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India ^bDepartment of Chemistry, Dr BR Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab 144011, India

> *Authors for correspondence: Dr. Sadhika Khullar, Email: <u>khullars@nitj.ac.in</u> Prof. Sanjay K. Mandal, E-mail: <u>sanjaymandal@iisermohali.ac.in</u>

Table of Contents

	Item	Page No.
Fig. S1	Solid-state diffuse reflectance spectra of 1-4	S3
Fig. S2-S5	FTIR spectra of 1-4	S4-S7
Fig. S6-S7	ESI mass spectra of 1 and 4	S8
Fig. S8	UV-vis spectra of 1-4 in a 1:1 H ₂ O and CH ₃ CN solution	S9
Fig. S9	ORTEP view of 1	S9
Fig. S10	ORTEP view of 2	S10
Fig. S11	Coordination environment around Cu(II) centers in 2	S10
Fig. S12	Perspective view of 1D CP of 2	S11
Fig. S13	ORTEP view of 3	S11
Fig. S14	ORTEP view of 4	S12
Fig. S15	Perspective view of packing of molecular rectangles in 4	S13
Fig. S16-S38	Catalysis study of 1-4	S14-S36
Fig. S39-S40	Stability of 2 and 4 after catalysis	S37
Table S1	Selected bond lengths (Å) and bond angles (°) of 1	S38
Table S2	Hydrogen bonding parameters for 1	S38
Table S3	Selected bond lengths (Å) and bond angles (°) of 2	S39
Table S4	Hydrogen bonding parameters for 2	S40
Table S5	Selected bond lengths (Å) and bond angles (°) of 3	S41
Table S6	Selected bond lengths (Å) and bond angles (°) of 4	S41
Table S7	Comparison of the catalytic activity of various MOCNs in	S42
	the Knoevenagel condensation reaction of an aldehyde and malononitrile	

Fig S1. Solid-state diffuse reflectance spectra of (a) as-synthesized **1-4**, and (b) solid crystals of **1-4** isolated from their respective solution in 1:1 H₂O/CH₃CN. λ_{max} (nm) for the d-d transition: 693 for **1**; 623 for **2**; 654 for **3** and 732 for **4**.

Fig. S2 (a) Full and (b) expanded region in FTIR spectrum of 1.

Fig. S3 (a) Full and (b) expanded region in FTIR spectrum of 2.

Fig. S4 (a) Full and (b) expanded region in FTIR spectrum of 3.

Fig. S5 (a) Full and (b) expanded region in FTIR spectrum of 4.

Fig. S6 ESI mass spectrum of 1 in H_2O .

Fig. S7 ESI mass spectrum of 4 in H_2O/CH_3CN .

Fig. 8 UV-vis spectra of **1-4** in a 1:1 H_2O and CH_3CN solution: (a) full and (b) expanded visible region.

Fig. S9 ORTEP view of 1 describing coordination environment around the Cu(II) centers.

Fig. S10 ORTEP view of 2.

Fig. S11 Coordination environment around Cu(II) centers in 2.

Fig. S12 Perspective view of a 1D coordination polymer of 2.

Fig. S13 ORTEP view of 3 describing the coordination environment around the Cu(II) centers.

Fig. S14 ORTEP view of 4 where one-fourth of the molecule is in the asymmetric unit.

Fig. S15 Packing diagram of molecular rectangles in **4**. (Color codes: carbon, grey; oxygen, red; nitrogen, blue; copper, cyan; sodium, yellow).

Catalysis study of 1-4

Fig. S16 Example of integration in the ¹H NMR spectrum for the determination of catalysis reaction product (Table 3, Entry 1).

Calculation of the Conversion (%) in the Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by 1a

Total amount of compounds at the end: Unreacted bezaldehyde (10.01 ppm) + 2- (benzylidene)malononitrile (7.81 ppm) = 0 + 1.00 = 1

Conversion (%) of 2-(benzylidene)malononitrile = (1/1) * 100 = 100%.

Fig. S17 Example of integration in the ¹H NMR spectrum for the determination of catalysis reaction product (Table 3, Entry 3).

Calculation of the Conversion (%) in the Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by 2a

Total amount of compounds at the end: Unreacted bezaldehyde (10.01 ppm) + 2- (benzylidene)malononitrile (7.81 ppm) = 0 + 1.00 = 1

Conversion (%) of 2-(benzylidene)malononitrile = (1/1) * 100 = 100%.

Fig. S18 Example of integration in the ¹H NMR spectrum for the determination of catalysis reaction product (Table 3, Entry 6).

Calculation of the Conversion (%) in the Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by 3a

Total amount of compounds at the end: Unreacted bezaldehyde (10.01 ppm) + 2- (benzylidene)malononitrile (7.81 ppm) = 0 + 1.00 = 1

Conversion (%) of 2-(benzylidene)malononitrile = (1/1) * 100 = 100%.

Fig. S19 Example of integration in the ¹H NMR spectrum for the determination of catalysis reaction product (Table 3, Entry 8).

Calculation of the Conversion (%) in the Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by 4a

Total amount of compounds at the end: Unreacted benzaldehyde (10.01 ppm) + 2- (benzylidene)malononitrile (7.81 ppm) = 0.02 + 1.00 = 1.02

Conversion (%) of 2-(benzylidene)malononitrile = (1/1.02) * 100 = 98%.

Fig. S20 Example of integration in the ¹H NMR spectrum for the determination of catalysis reaction product (Table 3, Entry 10).

Calculation of the Conversion (%) in the Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by un-activated 2

Total amount of compounds at the end: Unreacted bezaldehyde (10.03 ppm) + 2- (benzylidene)malononitrile (7.81 ppm) = 0.02 + 1.00 = 1.02

Conversion (%) of 2-(benzylidene)malononitrile = (1/1.02) * 100 = 98%.

Fig. S21 Example of integration in the ¹H NMR spectrum for the determination of catalysis reaction product (Table 3, Entry 11).

Calculation of the Conversion (%) in the Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by un-activated 4

Total amount of compounds at the end: Unreacted bezaldehyde (10.05 ppm) + 2- (benzylidene)malononitrile (7.81 ppm) = 0.03 + 1.00 = 1.03

Conversion (%) of 2-(benzylidene)malononitrile = (1/1.03) * 100 = 97%.

Fig. S22 ¹H NMR spectrum of 2-(4-nitrobenzylidene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 4nitrobenzaldehyde with malononitrile catalyzed by 2a (Table 4, entry 1)

Total amount of compounds at the end: Unreacted 4-nitrobezaldehyde (10.01 ppm) + 2-(4-nitrobenzylidene)malononitrile (7.91 ppm) = 0 + 1.00 = 1

Conversion (%) of 2-(4-nitrobenzylidene)malononitrile = (1/1) * 100 = 100%.

Fig. S23 ¹H NMR spectrum of 2-(4-fluorobenzylidene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 4fluorobenzaldehyde with malononitrile catalyzed by 2a (Table 4, entry 2)

Total amount of compounds at the end: Unreacted 4-fluorobezaldehyde (9.99 ppm) + 2-(4-fluorobenzylidene)malononitrile (7.77 ppm) = 0.01 + 1.00 = 1.01

Conversion (%) of 2-(4-fluorobenzylidene)malononitrile = (1/1.01) * 100 = 99%.

Fig. S24 ¹H NMR spectrum of 2-(4-chlororobenzylidene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 4chlorobenzaldehyde with malononitrile catalyzed by 2a (Table 4, entry 3)

Total amount of compounds at the end: Unreacted 4-chlorobezaldehyde (10.01 ppm) + 2-(4-chlorobenzylidene)malononitrile (7.76 ppm) = 0.02 + 1.00 = 1.02

Conversion (%) of 2-(4-chlorobenzylidene)malononitrile = (1/1.01) * 100 = 98%.

Fig. S25 ¹H NMR spectrum of 2-(4-bromobenzylidene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 4bromobenzaldehyde with malononitrile catalyzed by 2a (Table 4, entry 4)

Total amount of compounds at the end: Unreacted 4-bromobezaldehyde (10.01 ppm) + 2-(4-bromobenzylidene)malononitrile (7.76 ppm) = 0.01 + 1.00 = 1.01

Conversion (%) of 2-(4-bromobenzylidene)malononitrile = (1/1.01) * 100 = 99%.

Fig. S26 ¹H NMR spectrum of 2-(4-methoxybenzylidene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 4methoxybenzaldehyde with malononitrile catalyzed by 2a (Table 4, entry 5)

Total amount of compounds at the end: Unreacted 4-methoxybezaldehyde (9.89 ppm) + 2-(4-methoxybenzylidene)malononitrile (7.67 ppm) = 1.87 + 1.00 = 2.87

Conversion (%) of 2-(4-methoxybenzylidene)malononitrile = (1/2.87) * 100 = 35%.

Fig. S27 ¹H NMR spectrum of 2-(thiophen-2-ylmethylene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of thiophene-2carboxaldehyde with malononitrile catalyzed by 2a (Table 4, entry 6)

Total amount of compounds at the end: Unreacted thiophene-2-carboxaldehyde (9.9 ppm) + 2- (thiophen-2-ylmethylene)malononitrile (7.8 ppm) = 0.07 + 1.00 = 1.07

Conversion (%) of 2-(thiophen-2-ylmethylene)malononitrile = (1/1.07) * 100 = 93%.

Fig. S28 ¹H NMR spectrum of 2-(naphthalen-1-ylmethylene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of naphthalene-2-carboxaldehyde with malononitrile catalyzed by 2a (Table 4, entry 7)

Total amount of compounds at the end: Unreacted naphthaldehyde (10.43 ppm) + 2- (naphthalen-1-ylmethylene)malononitrile (8.66 ppm) = 0.49 + 1.00 = 1.49

Conversion (%) of 2-(naphthalen-1-ylmethylene)malononitrile = (1/1.49) * 100 = 67%.

Fig. S29 ¹H NMR spectrum of 2-(anthracen-9-ylmethylene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 9-anthracenecarboxaldehyde with malononitrile catalyzed by 2a (Table 4, entry 8)

Total amount of compounds at the end: Unreacted naphthaldehyde (11.50 ppm) + 2- (anthracen-9-ylmethylene)malononitrile (8.67 ppm) = 0.99 + 1.00 = 1.99

Conversion (%) of 2-(anthracen-9-ylmethylene)malononitrile = (1/1.99) * 100 = 50%.

Fig. S30 ¹H NMR spectrum of 2-(4-nitrobenzylidene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 4nitrobenzaldehyde with malononitrile catalyzed by 4a (Table 4, entry 1)

Total amount of compounds at the end: Unreacted 4-nitrobezaldehyde (10.01 ppm) + 2-(4-nitrobenzylidene)malononitrile (7.91 ppm) = 0 + 1.00 = 1

Conversion (%) of 2-(4-nitrobenzylidene)malononitrile = (1/1) * 100 = 100%.

Fig. S31 ¹H NMR spectrum of 2-(4-fluorobenzylidene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 4fluorobenzaldehyde with malononitrile catalyzed by 4a (Table 4, entry 2)

Total amount of compounds at the end: Unreacted 4-fluorobezaldehyde (10 ppm) + 2-(4-fluorobenzylidene)malononitrile (7.77 ppm) = 0.01 + 1.00 = 1.01

Conversion (%) of 2-(4-fluorobenzylidene)malononitrile = (1/1.01) * 100 = 99%.

Fig. S32 ¹H NMR spectrum of 2-(4-chlororobenzylidene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 4chlorobenzaldehyde with malononitrile catalyzed by 4a (Table 4, entry 3)

Total amount of compounds at the end: Unreacted 4-chlorobezaldehyde (10.01 ppm) + 2-(4-chlorobenzylidene)malononitrile (7.76 ppm) = 0 + 1.00 = 1

Conversion (%) of 2-(4-chlorobenzylidene)malononitrile = (1/1) * 100 = 100%.

Fig. S33 ¹H NMR spectrum of 2-(4-bromobenzylidene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 4bromobenzaldehyde with malononitrile catalyzed by 4a (Table 4, entry 4)

Total amount of compounds at the end: Unreacted 4-bromobezaldehyde (10.01 ppm) + 2-(4-bromobenzylidene)malononitrile (7.74 ppm) = 0 + 1.00 = 1

Conversion (%) of 2-(4-bromobenzylidene)malononitrile = (1/1) * 100 = 100%.

Fig. S34 ¹H NMR spectrum of 2-(4-methoxybenzylidene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 4methoxybenzaldehyde with malononitrile catalyzed by 4a (Table 4, entry 5)

Total amount of compounds at the end: Unreacted 4-methoxybezaldehyde (9.89 ppm) + 2-(4-methoxybenzylidene)malononitrile (7.65 ppm) = 0.37 + 1.00 = 1.37

Conversion (%) of 2-(4-methoxybenzylidene)malononitrile = (1/1.37) * 100 = 73%.

Fig. S35 ¹H NMR spectrum of 2-(thiophen-2-ylmethylene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of thiophene-2carboxaldehyde with malononitrile catalyzed by 4a (Table 4, entry 6)

Total amount of compounds at the end: Unreacted thiophene-2-carboxaldehyde (9.97 ppm) + 2-(thiophen-2-ylmethylene)malononitrile (7.9 ppm) = 0.08 + 1.00 = 1.08

Conversion (%) of 2-(thiophen-2-ylmethylene)malononitrile = (1/1.08) * 100 = 92%.

Fig. S36 ¹H NMR spectrum of 2-(naphthalen-1-ylmethylene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of naphthalene-2-carboxaldehyde with malononitrile catalyzed by 4a (Table 4, entry 7)

Total amount of compounds at the end: Unreacted naphthaldehyde (10.42 ppm) + 2- (naphthalen-1-ylmethylene)malononitrile (8.65 ppm) = 1.26 + 1.00 = 2.26

Conversion (%) of 2-(naphthalen-1-ylmethylene)malononitrile = (1/2.26) * 100 = 44%.

Fig. S37 ¹H NMR spectrum of 2-(anthracen-9-ylmethylene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 9-anthracenecarboxaldehyde with malononitrile catalyzed by 4a (Table 4, entry 8)

Total amount of compounds at the end: Unreacted naphthaldehyde (11.46 ppm) + 2- (anthracen-9-ylmethylene)malononitrile (8.84 ppm) = 2.05 + 1.00 = 3.05

Conversion (%) of 2-(anthracen-9-ylmethylene)malononitrile = (1/3.05) * 100 = 33%.

Fig. S38 ¹H NMR spectrum of 2-(pyren-1-ylmethylene)malononitrile in CDCl₃.

Calculation of the conversion (%) in the Knoevenagel condensation reaction of 1-pyrenecarboxaldehyde with malononitrile catalyzed by 4a (Table 4, entry 9)

Total amount of compounds at the end: Unreacted naphthaldehyde (10.79 ppm) + 2-(pyren-1-ylmethylene)malononitrile (8.87 ppm) = 2.51 + 1.00 = 3.51

Conversion (%) of 2-(pyren-1-ylmethylene)malononitrile = (1/3.51) * 100 = 28%.

Fig. S39 Comparison of FTIR spectra of (a) 2 and (b) 4 [as-synthesized, before and after catalysis].

Fig. S40 FESEM images of 2 and 4 before (a,c) and after (b,d) catalysis, respectively.

Table S1 Selected bond lengths (Å) and angles (°) for 1.

Bond distances (Å)

Cu1-N1	1.964(10)	Cu1-N3	1.991(10)
Cu1-O2	1.995(8)	Cu1-N2	2.045(10)
Cu1-01	2.313(8)	Cu2-05	1.949(8)
Cu2-N6	1.994(11)	Cu2-N4	1.999(11)
Cu2-N5	2.045(9)	Cu2-07	2.244(8)

Bond angles (°)

N1-Cu1-N3	165.2(4)	N1-Cu1-O2	97.6(3)
N3-Cu1-O2	97.0(4)	N1-Cu1-N2	83.5(4)
N3-Cu1-N2	81.9(4)	02-Cu1-N2	159.9(3)
N1-Cu1-O1	89.2(3)	N3-Cu1-O1	93.1(4)
02-Cu1-O1	90.9(3)	N2-Cu1-O1	109.2(3)
O5-Cu2-N6	98.3(4)	05-Cu2-N4	97.7(4)
N6-Cu2-N4	161.6(4)	05-Cu2-N5	172.7(3)
N6-Cu2-N5	80.1(5)	N4-Cu2-N5	83.0(5)
05-Cu2-07	88.8(3)	N6-Cu2-O7	93.9(3)
N4-Cu2-O7	95.6(3)	N5-Cu2-O7	98.5(4)

 Table S2 Hydrogen Bonding Parameters for 1.

DH····A	r(D H) (Å)	r(H A) (Å)	r(D A) (Å)	∠D H A (deg)
01H1A012	0.86	2.28	3.0781(13)	154.00
C6H6BO15	0.99	2.39	3.3471(14)	162.00
C7H7C015	0.99	2.49	3.4661(15)	171.00
C10H10O8	0.95	2.40	3.2827(14)	155.00
C16H16O3	0.95	2.36	3.1915(14)	145.00

Calculation for Determining the Number of Solvent Molecules Squeezed Out for the Refinement of SCXRD Structure of 1:

A solvent mask was calculated and 376 electrons were found in a volume of 1016\%A^3^ in **1** voids per unit cell. This is consistent with the presence of 1[CH3OH], 1[8H2O] per Asymmetric Unit, which account for 392 electrons per unit cell.

Table S3 Selected bond lengths (Å) and angles (°) for 2.

Bond distances (Å)

Cu1-N3	1.965(3)	Cu1-N8	1.972(3)
Cu1-05	1.985(3)	Cu1-N2	2.031(3)
Cu1-01	2.487(3)	Cu2-N6	1.971(3)
Cu2-08	1.976(3)	Cu2-N4	1.989(3)
Cu2-N5	2.035(3)	Cu2-O10	2.353(3)

Bond angles (°)

N3-Cu1-N8	165.81(14)	N3-Cu1-O5	97.10(13)
N8-Cu1-O5	96.74(12)	N3-Cu1-N2	83.47(13)
N8-Cu1-N2	83.79(13)	O5-Cu1-N2	166.74(12)
N3-Cu1-O1	85.99(12)	N8-Cu1-O1	86.73(12)
05-Cu1-O1	108.17(10)	N2-Cu1-O1	85.08(11)
N6-Cu2-O8	100.83(13)	N6-Cu2-N4	165.18(14)
08-Cu2-N4	93.96(13)	N6-Cu2-N5	83.18(13)
08-Cu2-N5	160.46(12)	N4-Cu2-N5	83.13(13)
N6-Cu2-O10	91.73(12)	08-Cu2-O10	109.50(11)
N4-Cu2-O10	82.47(12)	N5-Cu2-O10	89.34(12)

 Table S4 Hydrogen Bonding Parameters for 2.

DH····A	r(D H) (Å)	r(H A) (Å)	r(D A) (Å)	∠D H…A (deg)
014H14C05	0.85	2.18	3.018 (4)	170.00
014H14D09	0.85	2.13	2.964 (4)	169.00
C2H2O5	0.95	2.57	3.486 (6)	162.00
C6H6A011	0.99	2.51	3.335 (6)	140.00
C7H7A02	0.99	2.51	3.412(5)	151.00
C7H7BO12	0.99	2.54	3.453(5)	153.00
C10H10O6	0.95	2.48	3.208 (5)	133.00
C13H13BO13	0.99	2.41	3.194 (5)	136.00
C18H18O15	0.95	2.53	3.332(7)	142.00
C21H21BO9	0.99	2.42	3.220 (5)	137.00
C23H23AO14	0.99	2.37	3.345 (5)	170.00
C23H23BO3	0.99	2.55	3.207 (5)	123.00
C26H26O9	0.95	2.58	3.175 (5)	121.00
C29H29AO11	0.99	2.55	3.327 (5)	136.00
C29H29AO3	0.99	2.58	3.197 (5)	121.00
C31H31O2	0.95	2.59	3.322(5)	135.00
C34H34O6	0.95	2.40	3.182 (5)	139.00
C34H35AO14	0.98	2.26	3.032 (14)	135.00
C35H35CO4	0.98	2.23	3.100 (15)	148.00

Table S5 Selected bond lengths (Å) and angles (°) for 3.

Bond distances (Å)

Cu01-N1	1.952(10)	Cu01-O4	1.984(9)
Cu01-N3	1.985(10)	Cu01-N2	2.048(10)
Cu01-06	2.251(9)	Cu02-N6	1.953(10)
Cu02-O2	1.968(8)	Cu02-N4	1.968(10)
Cu02-N5	2.025(9)	Cu02-07	2.502(10)

Bond angles (°)

N1-Cu01-O4	94.7(4)	N1-Cu01-N3	165.9(4)
O4-Cu01-N3	96.6(4)	N1-Cu01-N2	83.9(4)
O4-Cu01-N2	159.9(4)	N3-Cu01-N2	82.6(4)
N1-Cu01-O6	96.7(4)	O4-Cu01-O6	94.6(3)
N3-Cu01-O6	90.8(4)	N2-Cu01-O6	105.4(4)
N6-Cu02-O2	96.2(4)	N6-Cu02-N4	166.6(4)
02-Cu02-N4	97.2(4)	N6-Cu02-N5	83.3(4)
O2-Cu02-N5	176.8(4)	N4-Cu02-N5	83.4(4)
N6-Cu02-O7	90.7(4)	02-Cu02-O7	95.1(3)
N4-Cu02-07	86.5(4)	N5-Cu02-O7	88.1(3)

Table S6 Selected bond lengths (Å) and angles (°) for 4.

Bond distances (Å)

Cu1-N3	1.959(16)	Cu1-N2	1.975(16)
Cu1-01	1.978(14)	Cu1-N1	1.987(13)
Cu1-O4	2.358(14)	Cl1-06	1.25(2)

Bond angles (°)

N3-Cu1-N2	166.6(7)	N3-Cu1-O1	95.1(6)
N2-Cu1-O1	97.2(6)	N3-Cu1-N1	84.4(6)
N2-Cu1-N1	84.7(6)	01-Cu1-N1	167.2(6)
N3-Cu1-O4	82.0(6)	N2-Cu1-O4	90.8(6)
01-Cu1-O4	99.1(7)	N1-Cu1-O4	93.5(7)

Table S7 Comparison of the catalytic activity of various MOCNs in the Knoevenagelcondensation reaction of an aldehyde and malononitrile

Catalyst	Cat. amount	Time (h)	Solvent	Temp (°C)	Yield (%)	Ref.ª
	3 mol%	2	CH₃OH	r.t.	100	This work
$[Cu_4(tphpn)_2(fdc)_2(ClO_4)_4] \cdot 4H_2O$ $\cdot NaClO_4 \textbf{(4)}$	2 mol%	2	CH₃OH	r.t.	98	This work
Zn-CBS	5 mol%	3	CH₃OH	r.t.	82	46
ZIF-9	5 mol%	4	Toluene	r.t.	99	48
$[Zn(Lz)(H_2O)_2]_n \cdot n(NMF)$	3 mol%	6	THF	r.t.	97	49
$[Cd(4-btapa)_2(NO_3)_2] \cdot 6H_2O$ $\cdot 2DMF$	5 mol%	12	Benzene	r.t.	98	50
$ \{ [Ni_4(\mu_6-MTB)_2(\mu_2-H_2O)_4 \\ (H_2O)_4] \cdot 10DMF \cdot 11H_2O \}_n $	3 mol%	6	p-Xylene	r.t.	78	51
[PbLx ₂]·2DMF·6H ₂ O	3 mol%	24	CH₃CN	r.t.	78	52
$[Zn(\kappa N-H_3Ly)(H_2O)_3]\cdot 3H_2O$	3 mol%	12	THF	r.t.	89	53
Tb.DCBA	10 (wt%)	6	CH_2CI_2	r.t.	>99	54
NUC-27	0.03 mmol	1	C₂H₅OH	60	99	55
[Zn(TIC4R)(HCOO)](HCOO)· 0.5DMF·1.5H₂O	0.01 mmol	0.66	-	60	>99	56
${[Cd(bpp)(L)(H_2O)] \cdot DMF}_n$	3 mol%	1	CH₃OH	30	80	57
NUC-21	0.03 mmol	1	-	70	99	58
${[Cd_2(2-bpbg)(fum)_2(H_2O)_2]}$ $\cdot 8.5H_2O_n$	2 mol%	1	CH₃OH	27	100	59
V-Zn-MOF	1 mol%	1	-	60	>99	60
$[Mn_2(bpta)_2(L1)_2(H_2O)_2]$	5 mol%	1.66	Water	30	98	61
$[Co_2(tdc)_2(tpxn)] \cdot (H_2O)_6\}_n$	2 mol%	1	CH₃OH	30	96	62
SPUZ-1	1 mol%	0.5	-	60	99.9	63
JNU-402-NH ₂	0.06 mmol	1	-	80	>99	64

^aThe reference numbers are as appeared in the paper